广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (6): 154-162.doi: 10.16088/j.issn.1001-6600.2021080801

• 研究论文 • 上一篇    下一篇

固相反应制备Li2FeSiO4/C及嵌/脱锂性能研究

李付绍*, 徐应仙, 武青青, 邓明森*   

  1. 贵州省纳米材料模拟与计算重点实验室(贵州师范学院),贵州贵阳550018
  • 收稿日期:2021-08-08 修回日期:2021-08-31 出版日期:2022-11-25 发布日期:2023-01-17
  • 通讯作者: 李付绍(1978—),男,贵州思南人,贵州师范学院副教授,博士。E-mail:lifushao@126.com邓明森(1981—),男,湖北恩施人,贵州师范学院副教授,博士。E-mail:deng@gznc.edu.cn
  • 基金资助:
    国家自然科学基金(52062006);贵州省基础研究计划(黔科合基础-ZK[2021]一般237)

Synthesis of Li2FeSiO4/C by Solid-State Reaction and Its Lithium Intercalation/de-Intercalation Property

LI Fushao*, XU Yingxian, WU Qingqing, DENG Mingsen*   

  1. Guizhou Provincial Key Laboratory of Computational Nano-Material Science (Guizhou Education University), Guiyang Guizhou 550018, China
  • Received:2021-08-08 Revised:2021-08-31 Online:2022-11-25 Published:2023-01-17

摘要: 本文利用直接高温固相反应,合成制备了锂离子电池正极材料Li2FeSiO4及Li2FeSiO4/C,并研究了碳复合改性对Li2FeSiO4的结构、电导率、嵌/脱锂性能、循环比容量等方面的影响。结果表明,材料的制备工艺流程简单易行,有利于规模化生产;碳复合改性有利于提高硅酸盐正极材料的导电性能,改善材料在成相反应后的粒度分布;特别是碳复合改性有利于提高Li2FeSiO4的嵌/脱锂性能和循环比容量,Li2FeSiO4/C在0.1C倍率下首次放电容量高达120 mAh/g以上,大大高于未经复合改性Li2FeSiO4的20 mAh/g。研究表明,Li2FeSiO4是一种很有研究价值和开发潜力的锂离子电池正极材料,碳复合改性可显著克服该材料在电导率、电化学性能等诸多方面所存在的不足和局限。

关键词: 锂离子电池, 硅酸盐, 正极材料, 嵌/脱锂性能, 电化学技术

Abstract: In this paper, Li2FeSiO4 as well as Li2FeSiO4/C was prepared as cathode materials of lithium-ion batteries by direct high temperature solid-sate reaction, and effect of carbonized modification on the structure, electrical conductivity, lithium intercalation/de-intercalation property, and cyclic specific capacity of Li2FeSiO4 was investigated. The result shows that this process of material preparation is economic and scalable. The carbonized composite helps to enhance the electrical conductivity of Li2FeSiO4, and also improves the particle distribution after phase formation reaction of Li2FeSiO4. Most importantly, carbonized composite quite facilitates the lithium intercalation/de-intercalation and greatly promotes the cyclic specific capacity of Li2FeSiO4, and initial discharge capacity of Li2FeSiO4/C under rate of 0.1C reaches above 120 mAh/g, much higher than the 20 mAh/g of Li2FeSiO4. In conclusion, Li2FeSiO4 is a most promising cathode material of lithium-ion batteries, and carbonized modification can overcome the shortcomings of this cathode material in aspects of electrical conductivity, electrochemical performance, and so on.

Key words: lithium-ion batteries, silicates, cathode material, lithium intercalation/de-intercalation property, electrochemical techniques

中图分类号: 

  • TM911
[1] LI W D, SONG B H, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059.
[2] ZHANG Y X, YANG Z J, TIAN C X. Probing and quantifying cathode charge heterogeneity in Li ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23628-23661.
[3] LING J, KARUPPIAH C, KRISHNAN S G, et al. Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review[J]. Energy and Fuels, 2021, 35(13): 10428-10450.
[4] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[5] 童汇, 胡国华, 胡国荣, 等. 锂离子电池正极材料LiFePO4/C的合成研究[J].无机化学学报, 2006, 22(12):2159-2164.
[6] KOBAYASHI S, KUWABARA A, FISHER C A J, et al. Atomic-scale analysis of biphasic boundaries in the lithium-ion battery cathode caterial LiFePO4[J]. ACS Applied Energy Materials 2020, 3(8): 8009-8016.
[7] 蒋皓宇, 肖剑荣, 赵航. 复合正极材料xLiFePO4·yLi3V2(PO4)3/C的合成及其电化学性能[J]. 桂林理工大学学报, 2015, 35(2): 358-363.
[8] ISLAM M S, DOMINKO R, MASQUELIER C, et al. Silicate cathodes for lithium batteries: alternatives to phosphates? [J]. Journal of Materials Chemistry, 2011, 21(27): 9811-9818.
[9] NISHIMURA S I, HAYASE S, KANNO R, et al. Structure of Li2FeSiO4[J]. Journal of the American Chemical Society, 2008, 130(40): 13212-13213.
[10] SARACIBAR A, VAN DER VEN A, ARROYO-DE DOMPABLO M E. Crystal structure, energetics, and electrochemistry of Li2FeSiO4 polymorphs from first principles calculations[J]. Chemistry of Materials, 2012, 24(3): 495-503.
[11] NYTÉN A, STJERNDAHL M, RENSMO H, et al. Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS[J]. Journal of Materials Chemistry, 2006, 16(34): 3483-3488.
[12] NYTÉN A, ABOUIMRANE A, ARMAND M, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material[J]. Electrochemistry Communications, 2005, 7(2): 156-160.
[13] MALI G, SIRISOPANAPORN C, MASQUELIER C, et al. Li2FeSiO4 polymorphs probed by 6Li MAS NMR and 57Fe Mssbauer spectroscopy[J]. Chemistry of Materials, 2011, 23(11): 2735-2744.
[14] WEI B, LU X, VOISARD F, et al. In situ TEM investigation of electron irradiation induced metastable states in lithium-ion battery cathodes: Li2FeSiO4 versus LiFePO4 [J]. ACS Applied Energy Materials, 2018, 1(7): 3180-3189.
[15] HERGETT W, NEEF C, MEYER H P, et al. Challenges in the crystal growth of Li2FeSiO4[J]. Journal of Crystal Growth, 2021, 556: 125995.
[16] PENG Z D, CAO Y B, HU G R, et al. Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries[J]. Chinese Chemical Letters, 2009, 20(8): 1000-1004.
[17] MUTHU MUNIYANDI T, BALAMURUGAN S, NARESH N, et al. Li2FeSiO4/C aerogel: a promising nanostructured cathode material for lithium-ion battery applications[J]. Journal of Alloys and Compounds, 2021, 887: 161341.
[18] 李黎明, 郭华军, 饶程, 等.湿化学法-高温固相法合成锂离子电池正极材料Li2FeSiO4的研究[J]. 材料导报, 2010, 24(S2): 337-340.
[19] 彭春丽, 张佳峰, 曹璇, 等. 锂离子电池正极材料Li2FeSiO4的研究进展[J]. 化工新型材料, 2011, 39(1): 28-31.
[20] LI L M, GUO H J, LI X H, et al. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode[J]. Journal of Power Sources, 2009, 189(1): 45-50.
[21] ZHANG L, NI J F, WANG W C, et al. 3D porous hierarchical Li2FeSiO4/C for rechargeable lithium batteries[J]. Journal of Materials Chemistry A, 2015, 3(22): 11782-11786.
[22] GONG Z L, LI Y X, HE G N, et al. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process[J]. Electrochemical and Solid-State Letters, 2008, 11(5): A60.
[23] YABUUCHI N, YAMAKAWA Y, YOSHII K, et al, Low-temperature phase of Li2FeSiO4: crystal structure and a preliminary study of electrochemical behavior[J]. Dalton Transactions, 2011, 40(9): 1846-1848.
[24] ZAGHIB K, AIT SALAH A, RAVET N, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate[J]. Journal of Power Sources, 2006, 160(2): 1381-1386.
[25] 王霞. 锂离子电池正极材料Li2FeSiO4/C的改性研究[D]. 临汾:山西师范大学, 2013.
[26] LARSSON P, AHUJA R, NYTÉN A, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4[J]. Electrochemistry Communications, 2006, 8(5): 797-800.
[27] NYTÉN A, KAMALI S, HÄGGSTRÖM L, et al. The lithium extraction/insertion mechanism in Li2FeSiO4[J]. Journal of Materials Chemistry, 2006, 16(23): 2266-2272.
[28] LV X B, ZHAO X, WU S Q, et al. Fe-Si networks and charge/discharge-induced phase transitions in Li2FeSiO4 cathode materials[J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14557-14563.
[29] 王瑞, 宋树祥, 夏海英.融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3):1-10.
[30] XU Y M, SHEN W, ZHANG A L, et al. Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 12982-12990.
[31] YAN X T, HOU Y H, ZHENG S H, et al. Benefits of Ga, Ge and As substitution in Li2FeSiO4: a first-principles exploration of the structural, electrochemical and capacity properties[J]. Physical Chemistry Chemical Physics, 2020, 22(26): 14712-14719.
[32] ZENG Y, CHIU H C, OUYANG B, et al. Unveiling the mechanism of improved capacity retention in Pmn21 Li2FeSiO4 cathode by cobalt substitution[J]. Journal of Materials Chemistry A, 2019, 7(44): 25399-25414.
[33] KUMAR A, JAYAKUMAR O D, JAGANNA T H, et al. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries[J]. Dalton Transactions, 2017, 46(38): 12908-12915.
[34] SINGH S, RAJ A K, SEN R, et al. Impact of Cl doping on electrochemical performance in orthosilicate (Li2FeSiO4): a density functional theory supported experimental approach[J]. ACS Applied Materials and Interfaces, 2017, 9(32): 26885-26896.
[1] 赵中华, 晏晓锋, 童有为. 基于自适应渐消扩展卡尔曼滤波的锂离子电池SOC估计[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 58-66.
[2] 王瑞, 宋树祥, 夏海英. 融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 1-10.
[3] 韦振汉, 宋树祥, 夏海英. 基于随机森林的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴磊, 黄云峰, 农东新, 许为斌. 广西兰科植物新资料[J]. 广西师范大学学报(自然科学版), 2011, 29(3): 57 -59 .
[2] 邝先验, 陈自如. 考虑礼让行人的交叉口机非混合交通流模型[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 1 -15 .
[3] 刘伟铭, 陈纲梅, 林观荣, 李静宁. 高速公路收费站与衔接信号交叉口协调控制研究[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 16 -26 .
[4] 邹艳丽, 汪洋, 刘树生, 姚飞. 带有邻居度信息的容量负载模型下电网级联故障研究[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 27 -36 .
[5] 谢丽娜, 蒋品群, 宋树祥, 岑明灿. 一款低损耗低噪声宽调谐的高阶级联N通道滤波器[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 37 -44 .
[6] 罗兰, 周楠, 司杰. 不确定细胞神经网络鲁棒稳定新的时滞划分法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 45 -52 .
[7] 王健, 郑七凡, 李超, 石晶. 基于ENCODER_ATT机制的远程监督关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 53 -60 .
[8] 肖逸群, 宋树祥, 夏海英. 基于多特征的快速行人检测方法及实现[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 61 -67 .
[9] 王勋, 李廷会, 潘骁, 田宇. 基于改进模糊C均值聚类与Otsu的图像分割方法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 68 -73 .
[10] 钟祥贵, 孙悦, 吴湘华. 几乎CAP*-子群与有限群的p-超可解性[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 74 -78 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发