|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (6): 154-162.doi: 10.16088/j.issn.1001-6600.2021080801
李付绍*, 徐应仙, 武青青, 邓明森*
LI Fushao*, XU Yingxian, WU Qingqing, DENG Mingsen*
摘要: 本文利用直接高温固相反应,合成制备了锂离子电池正极材料Li2FeSiO4及Li2FeSiO4/C,并研究了碳复合改性对Li2FeSiO4的结构、电导率、嵌/脱锂性能、循环比容量等方面的影响。结果表明,材料的制备工艺流程简单易行,有利于规模化生产;碳复合改性有利于提高硅酸盐正极材料的导电性能,改善材料在成相反应后的粒度分布;特别是碳复合改性有利于提高Li2FeSiO4的嵌/脱锂性能和循环比容量,Li2FeSiO4/C在0.1C倍率下首次放电容量高达120 mAh/g以上,大大高于未经复合改性Li2FeSiO4的20 mAh/g。研究表明,Li2FeSiO4是一种很有研究价值和开发潜力的锂离子电池正极材料,碳复合改性可显著克服该材料在电导率、电化学性能等诸多方面所存在的不足和局限。
中图分类号:
[1] LI W D, SONG B H, MANTHIRAM A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017, 46(10): 3006-3059. [2] ZHANG Y X, YANG Z J, TIAN C X. Probing and quantifying cathode charge heterogeneity in Li ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(41): 23628-23661. [3] LING J, KARUPPIAH C, KRISHNAN S G, et al. Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review[J]. Energy and Fuels, 2021, 35(13): 10428-10450. [4] PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194. [5] 童汇, 胡国华, 胡国荣, 等. 锂离子电池正极材料LiFePO4/C的合成研究[J].无机化学学报, 2006, 22(12):2159-2164. [6] KOBAYASHI S, KUWABARA A, FISHER C A J, et al. Atomic-scale analysis of biphasic boundaries in the lithium-ion battery cathode caterial LiFePO4[J]. ACS Applied Energy Materials 2020, 3(8): 8009-8016. [7] 蒋皓宇, 肖剑荣, 赵航. 复合正极材料xLiFePO4·yLi3V2(PO4)3/C的合成及其电化学性能[J]. 桂林理工大学学报, 2015, 35(2): 358-363. [8] ISLAM M S, DOMINKO R, MASQUELIER C, et al. Silicate cathodes for lithium batteries: alternatives to phosphates? [J]. Journal of Materials Chemistry, 2011, 21(27): 9811-9818. [9] NISHIMURA S I, HAYASE S, KANNO R, et al. Structure of Li2FeSiO4[J]. Journal of the American Chemical Society, 2008, 130(40): 13212-13213. [10] SARACIBAR A, VAN DER VEN A, ARROYO-DE DOMPABLO M E. Crystal structure, energetics, and electrochemistry of Li2FeSiO4 polymorphs from first principles calculations[J]. Chemistry of Materials, 2012, 24(3): 495-503. [11] NYTÉN A, STJERNDAHL M, RENSMO H, et al. Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS[J]. Journal of Materials Chemistry, 2006, 16(34): 3483-3488. [12] NYTÉN A, ABOUIMRANE A, ARMAND M, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material[J]. Electrochemistry Communications, 2005, 7(2): 156-160. [13] MALI G, SIRISOPANAPORN C, MASQUELIER C, et al. Li2FeSiO4 polymorphs probed by 6Li MAS NMR and 57Fe Mssbauer spectroscopy[J]. Chemistry of Materials, 2011, 23(11): 2735-2744. [14] WEI B, LU X, VOISARD F, et al. In situ TEM investigation of electron irradiation induced metastable states in lithium-ion battery cathodes: Li2FeSiO4 versus LiFePO4 [J]. ACS Applied Energy Materials, 2018, 1(7): 3180-3189. [15] HERGETT W, NEEF C, MEYER H P, et al. Challenges in the crystal growth of Li2FeSiO4[J]. Journal of Crystal Growth, 2021, 556: 125995. [16] PENG Z D, CAO Y B, HU G R, et al. Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries[J]. Chinese Chemical Letters, 2009, 20(8): 1000-1004. [17] MUTHU MUNIYANDI T, BALAMURUGAN S, NARESH N, et al. Li2FeSiO4/C aerogel: a promising nanostructured cathode material for lithium-ion battery applications[J]. Journal of Alloys and Compounds, 2021, 887: 161341. [18] 李黎明, 郭华军, 饶程, 等.湿化学法-高温固相法合成锂离子电池正极材料Li2FeSiO4的研究[J]. 材料导报, 2010, 24(S2): 337-340. [19] 彭春丽, 张佳峰, 曹璇, 等. 锂离子电池正极材料Li2FeSiO4的研究进展[J]. 化工新型材料, 2011, 39(1): 28-31. [20] LI L M, GUO H J, LI X H, et al. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode[J]. Journal of Power Sources, 2009, 189(1): 45-50. [21] ZHANG L, NI J F, WANG W C, et al. 3D porous hierarchical Li2FeSiO4/C for rechargeable lithium batteries[J]. Journal of Materials Chemistry A, 2015, 3(22): 11782-11786. [22] GONG Z L, LI Y X, HE G N, et al. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process[J]. Electrochemical and Solid-State Letters, 2008, 11(5): A60. [23] YABUUCHI N, YAMAKAWA Y, YOSHII K, et al, Low-temperature phase of Li2FeSiO4: crystal structure and a preliminary study of electrochemical behavior[J]. Dalton Transactions, 2011, 40(9): 1846-1848. [24] ZAGHIB K, AIT SALAH A, RAVET N, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate[J]. Journal of Power Sources, 2006, 160(2): 1381-1386. [25] 王霞. 锂离子电池正极材料Li2FeSiO4/C的改性研究[D]. 临汾:山西师范大学, 2013. [26] LARSSON P, AHUJA R, NYTÉN A, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4[J]. Electrochemistry Communications, 2006, 8(5): 797-800. [27] NYTÉN A, KAMALI S, HÄGGSTRÖM L, et al. The lithium extraction/insertion mechanism in Li2FeSiO4[J]. Journal of Materials Chemistry, 2006, 16(23): 2266-2272. [28] LV X B, ZHAO X, WU S Q, et al. Fe-Si networks and charge/discharge-induced phase transitions in Li2FeSiO4 cathode materials[J]. Physical Chemistry Chemical Physics, 2018, 20(21): 14557-14563. [29] 王瑞, 宋树祥, 夏海英.融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3):1-10. [30] XU Y M, SHEN W, ZHANG A L, et al. Template-free hydrothermal synthesis of Li2FeSiO4 hollow spheres as cathode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 12982-12990. [31] YAN X T, HOU Y H, ZHENG S H, et al. Benefits of Ga, Ge and As substitution in Li2FeSiO4: a first-principles exploration of the structural, electrochemical and capacity properties[J]. Physical Chemistry Chemical Physics, 2020, 22(26): 14712-14719. [32] ZENG Y, CHIU H C, OUYANG B, et al. Unveiling the mechanism of improved capacity retention in Pmn21 Li2FeSiO4 cathode by cobalt substitution[J]. Journal of Materials Chemistry A, 2019, 7(44): 25399-25414. [33] KUMAR A, JAYAKUMAR O D, JAGANNA T H, et al. Mg doped Li2FeSiO4/C nanocomposites synthesized by the solvothermal method for lithium ion batteries[J]. Dalton Transactions, 2017, 46(38): 12908-12915. [34] SINGH S, RAJ A K, SEN R, et al. Impact of Cl doping on electrochemical performance in orthosilicate (Li2FeSiO4): a density functional theory supported experimental approach[J]. ACS Applied Materials and Interfaces, 2017, 9(32): 26885-26896. |
[1] | 赵中华, 晏晓锋, 童有为. 基于自适应渐消扩展卡尔曼滤波的锂离子电池SOC估计[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 58-66. |
[2] | 王瑞, 宋树祥, 夏海英. 融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 1-10. |
[3] | 韦振汉, 宋树祥, 夏海英. 基于随机森林的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 27-33. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |