|
广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (3): 52-58.doi: 10.16088/j.issn.1001-6600.2020.03.007
徐紫文
XU Ziwen
摘要: 本文进一步研究Ye M L和He Y R提出的新双投影算法。仅在其对偶变分不等式解集非空的条件下,通过构造投影算子的一个新的投影区域,本文提出一种求解非单调变分不等式的改进的双投影算法,并证明了其全局收敛性。
中图分类号:
[1] NAGURNEY A, RAMANUJAM P. Transportation network policy modeling with goal targets and generalized penalty functions[J].Transportation Science,1996,30(1): 3-13.DOI: 10.1287/trsc.30.1.3. [2] ANTHONY C, HONG K L,YANG H. A self-adaptive projection and contraction algorithm for the traffic assignment problem with path-specific costs[J].European Journal of Operational Research,2001,135(1): 27-41.DOI: 10.1016/s0377-2217(00)00287-3. [3] NAGAURNE A. Network economics: a variational inequality approach[M]. New York: Springer,1993. [4] LIONS J L, STAMPACCHIA G. Variational inequalities[J].Communications on Pure and Applied Mathematics,1967,20(3): 493-519. [5] RONALD E, BRUCK J. An iterative solution of a variational inequality for certain monotone operators in Hilbert space[J].Bulletin of the American Mathematical Society,1975,81(5): 890-892.DOI: 10.1090/S0002-9904-1975-13874-2. [6] SOLODOV M V, SVAITER B F. A new projection method for variational inequality problems[J].SIAM Journal on Control and Optimization, 1999,37(3): 765-776.DOI: 10.1137/S0363012997317475. [7] MUHAMMAD A N. Some recent advances in variational inequalities. II. other concepts[J].New Zealand Journal of Mathematics,1997,26(2): 229-255. [8] HARTMAN P, STAMPACCHINA G. On some non-linear elliptic differential-functional equations[J].Acta Mathematica,1966,115(1): 271-310.DOI: 10.1007/bf02392210. [9] GOLDSTEIN A A. Convex programming in Hilbert space[J].Bulletin of the American Mathematical Society,1964,70(5): 109-112.DOI: 10.1090/s0002-9904-1964-11178-2. [10]LEVITIN E S, POLYAK B T. Constrained minimization methods[J].USSR Computational Mathematics and Mathematical Physics,1966,6(5): 1-50. [11]KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J].Matecon,1976,12: 747-756. [12]IUSEM A N, SVAITER B F. A variant of korpelevich′s method for variational inequalities with a new search strategy[J].Optimization,1997,42(4): 309-321.DOI: 10.1080/02331939708844365. [13]FACCHINEI F, PANG J S. Finite-dimensional variational inequalities and complementarity problems[M].Switzerland AG: Springer,2003. [14]XIU N H, ZHANG J Z. Some recent advances in projection-type methods for variational inequalities[J].Journal of Computational and Applied Mathematics,2003,152(1/2): 559-585.DOI: 10.1016/s0377-0427(02)00730-6. [15]WANG Y J, XIU N H, WANG C Y. Unified framework of extragradient-type methods for pseudomonotone variational inequalities[J].Journal of Optimization Theory and Applications,2001,111(3): 641-656.DOI: 10.1023/A:1012606212823. [16]YE M L, HE Y R. A double projection method for solving variational inequalities without monotonicity[J].Computational Optimization and Applications,2015,60(1): 141-150.DOI: 10.1007/s10589-014-9659-7. [17]FUKUSHIMA M. 非线性最优化基础[M]. 林贵华,译. 北京: 科学出版社,2011. [18]HE Y R. A new double projection algorithm for variational inequalities[J].Journal of Computational and Applied Mathematics 2006,185(1): 166-173.DOI: 10.1016/j.cam.2005.01.031. |
[1] | 王佳玉. 有限维空间中广义混合变分不等式的近似-似投影算法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 86-93. |
[2] | 唐国吉,赵婷,何登旭. 扰动广义混合变分不等式的可解性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 76-83. |
[3] | 张亚玲, 穆学文. 二阶锥规划的一种Barzilai-Borwein 梯度算法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 65-71. |
[4] | 彭再云, 孔祥茜. 强G-半预不变凸性与非线性规划问题[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 48-53. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |