广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (3): 52-58.doi: 10.16088/j.issn.1001-6600.2020.03.007

• • 上一篇    下一篇

非单调变分不等式问题的双投影算法研究

徐紫文   

  1. 四川师范大学数学科学学院,四川成都610068
  • 收稿日期:2019-01-11 出版日期:2020-05-25 发布日期:2020-06-11
  • 通讯作者: * 徐紫文(1994—),女,四川南充人,四川师范大学数学科学学院。E-mail:846830269@qq.com
  • 基金资助:
    国家自然科学基金(11871359)

New Double Projection Algorithms for Non-monotone Variational Inequality Problems

XU Ziwen   

  1. College of Mathematical Science, Sichuan Normal University, Chengdu Sichuan 610068, China
  • Received:2019-01-11 Online:2020-05-25 Published:2020-06-11

摘要: 本文进一步研究Ye M L和He Y R提出的新双投影算法。仅在其对偶变分不等式解集非空的条件下,通过构造投影算子的一个新的投影区域,本文提出一种求解非单调变分不等式的改进的双投影算法,并证明了其全局收敛性。

关键词: 非单调变分不等式, 双投影算法, 对偶变分不等式, 超平面

Abstract: The projection algorithm proposed by Ye M L and He Y R is further studied in this paper. Under the condition that the solution of the dual variational inequality is non-empty, an improved double projection algorithm for solving the non-monotone variational inequality is proposed by constructing a new projection region of the projection operator, and its global convergence is proved.

Key words: non-monotone variational inequalities, double projection algorithm, dual variational inequality, hyperplane

中图分类号: 

  • O22
[1] NAGURNEY A, RAMANUJAM P. Transportation network policy modeling with goal targets and generalized penalty functions[J].Transportation Science,1996,30(1): 3-13.DOI: 10.1287/trsc.30.1.3.
[2] ANTHONY C, HONG K L,YANG H. A self-adaptive projection and contraction algorithm for the traffic assignment problem with path-specific costs[J].European Journal of Operational Research,2001,135(1): 27-41.DOI: 10.1016/s0377-2217(00)00287-3.
[3] NAGAURNE A. Network economics: a variational inequality approach[M]. New York: Springer,1993.
[4] LIONS J L, STAMPACCHIA G. Variational inequalities[J].Communications on Pure and Applied Mathematics,1967,20(3): 493-519.
[5] RONALD E, BRUCK J. An iterative solution of a variational inequality for certain monotone operators in Hilbert space[J].Bulletin of the American Mathematical Society,1975,81(5): 890-892.DOI: 10.1090/S0002-9904-1975-13874-2.
[6] SOLODOV M V, SVAITER B F. A new projection method for variational inequality problems[J].SIAM Journal on Control and Optimization, 1999,37(3): 765-776.DOI: 10.1137/S0363012997317475.
[7] MUHAMMAD A N. Some recent advances in variational inequalities. II. other concepts[J].New Zealand Journal of Mathematics,1997,26(2): 229-255.
[8] HARTMAN P, STAMPACCHINA G. On some non-linear elliptic differential-functional equations[J].Acta Mathematica,1966,115(1): 271-310.DOI: 10.1007/bf02392210.
[9] GOLDSTEIN A A. Convex programming in Hilbert space[J].Bulletin of the American Mathematical Society,1964,70(5): 109-112.DOI: 10.1090/s0002-9904-1964-11178-2.
[10]LEVITIN E S, POLYAK B T. Constrained minimization methods[J].USSR Computational Mathematics and Mathematical Physics,1966,6(5): 1-50.
[11]KORPELEVICH G M. The extragradient method for finding saddle points and other problems[J].Matecon,1976,12: 747-756.
[12]IUSEM A N, SVAITER B F. A variant of korpelevich′s method for variational inequalities with a new search strategy[J].Optimization,1997,42(4): 309-321.DOI: 10.1080/02331939708844365.
[13]FACCHINEI F, PANG J S. Finite-dimensional variational inequalities and complementarity problems[M].Switzerland AG: Springer,2003.
[14]XIU N H, ZHANG J Z. Some recent advances in projection-type methods for variational inequalities[J].Journal of Computational and Applied Mathematics,2003,152(1/2): 559-585.DOI: 10.1016/s0377-0427(02)00730-6.
[15]WANG Y J, XIU N H, WANG C Y. Unified framework of extragradient-type methods for pseudomonotone variational inequalities[J].Journal of Optimization Theory and Applications,2001,111(3): 641-656.DOI: 10.1023/A:1012606212823.
[16]YE M L, HE Y R. A double projection method for solving variational inequalities without monotonicity[J].Computational Optimization and Applications,2015,60(1): 141-150.DOI: 10.1007/s10589-014-9659-7.
[17]FUKUSHIMA M. 非线性最优化基础[M]. 林贵华,译. 北京: 科学出版社,2011.
[18]HE Y R. A new double projection algorithm for variational inequalities[J].Journal of Computational and Applied Mathematics 2006,185(1): 166-173.DOI: 10.1016/j.cam.2005.01.031.
[1] 王佳玉. 有限维空间中广义混合变分不等式的近似-似投影算法[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 86-93.
[2] 唐国吉,赵婷,何登旭. 扰动广义混合变分不等式的可解性[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 76-83.
[3] 张亚玲, 穆学文. 二阶锥规划的一种Barzilai-Borwein 梯度算法[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 65-71.
[4] 彭再云, 孔祥茜. 强G-半预不变凸性与非线性规划问题[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 郑威,文国秋,何威,胡荣耀,赵树之. 属性自表达的低秩无监督属性选择算法[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 61 -69 .
[2] 黄雯, 谭惠丽. 心脏记忆对螺旋波动力学的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 1 -8 .
[3] 彭红, 钟祥贵, 谢青. 几乎SS-嵌入子群与有限群的p-幂零性[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 45 -49 .
[4] 汪建华, 李玉珑, 陈敦学, 朱鑫, 刘知行, 张建社, 褚武英, 宾石玉. 饥饿再投喂对鳜肌FSRP-1、FSRP-3和肠道PepT1基因表达的影响[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 144 -149 .
[5] 许伦辉, 刘景柠, 朱群强, 王晴, 谢岩, 索圣超. 自动引导车路径偏差的控制研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 1 -6 .
[6] 邝先验, 吴赟, 曹韦华, 吴银凤. 城市混合非机动车流的元胞自动机仿真模型[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 7 -14 .
[7] 肖瑞杰, 刘野, 修晓明, 孔令江. 耦合腔光机械系统中两个机械振子的态交换[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 15 -19 .
[8] 黄慧琼, 覃运梅. 考虑驾驶员性格特性的超车模型研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 20 -26 .
[9] 袁乐平, 孙瑞山. 飞行冲突调配概率安全评估方法研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 27 -31 .
[10] 杨盼盼, 祝龙记, 操孟杰. 基于STM32的TSC型无功补偿控制系统的研究[J]. 广西师范大学学报(自然科学版), 2015, 33(1): 32 -37 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发