广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (1): 54-59.doi: 10.16088/j.issn.1001-6600.2020.01.007

• • 上一篇    下一篇

单叶调和函数的一个子类

孙祚晨, 王麒翰, 龙波涌*   

  1. 安徽大学数学科学学院,安徽合肥230601
  • 收稿日期:2018-09-26 出版日期:2020-01-25 发布日期:2020-01-15
  • 通讯作者: 龙波涌(1974—),男(侗族),湖南会同人,安徽大学副教授,博士。E-mail:longboyong@ahu.edu.cn
  • 基金资助:
    国家自然科学基金(11501001);安徽省自然科学基金(1908085MA18),安徽大学科研项目(J01006023, Y01002428)

A Subclass of Harmonic Univalent Functions

SUN Zuochen, WANG Qihan, LONG Boyong*   

  1. School of Mathematical Science, Anhui University, Hefei Anhui 230601, China
  • Received:2018-09-26 Online:2020-01-25 Published:2020-01-15

摘要: 本文研究一类Salagean型单叶调和函数,得到了这类函数的拟共形性、凸性和卷积性, 改进了相关的结果。

关键词: 调和函数, 拟共形映射, Salagean导数, 卷积, 凸性

Abstract: A class of Salagean-type harmonic univalent functions is investigated. Quasiconformality, convexity and convolution of this class are obtained. Some related results are improved.

Key words: harmonic functions, quasiconformal mappings, Salagean derivative, convolution, convexity

中图分类号: 

  • O174.51
[1] CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions[J].Annales Academiæ Scientiarum Fennicæ Mathematica,1984,9: 3-25.
[2] AL-SHAQSI K, DARUS M, FADIPE-JOSEPH O A. A new subclass of Salagean-type harmonic univalent functions[J].Abstract and Applied Analysis,2010,Art.ID 821531:12.
[3] CHEN S L, PONNUSAMY S, WANG X T. Coefficient estimates and Landau-Blochs constant for planar harmonic mappings[J].Bulletin of the Malaysian Mathematical Sciences Society,2011,34(2): 255-265.
[4] CHEN X D, FANG A N. Harmonicity of the inverse of a harmonicdiffeomorphism[J].Journal of Mathematical Analysis and Applications,2012,389(1): 647-655.
[5] HUANG X Z. Estimates on Bloch constants for planar harmonic mappings[J].Journal of Mathematical Analysis and Applications,2008,337(2): 880-887.
[6] JAHANGIRI J M. Harmonic functions starlike in the unit disk[J].Journal of Mathematical Analysis and Applications,1999,235(2): 470-477.
[7] JAHANGIRI J M. Coecient bounds and univalence criteria for harmonic functionswith negative coeffcients[J].Annales Universitatis Mariae Curie-Skłodowska Sectio A Mathematica,1998,52(2): 57-66.
[8] LI L L, PONNUSAMY S. Solution to an open problem on convolutions of harmonic mappings[J].Complex Variables and Elliptic Equations,2013,58(12): 1647-1653.
[9] LIU M S. Landau’s theorems for biharmonic mappings[J].Complex Variables and Elliptic Equations,2008,53(9): 843-855.
[10]SILVERMAN H, SILVIA E M. Subclasses of harmonic univalent functions[J].New Zealand Journal of Mathematics,1999,28(2): 275-284.
[11]WANG X T, LIANG X Q, ZHANG Y L. Precise coecient estimates for close-to-convex harmonic univalent mappings[J].Journal of Mathematical Analysis and Applications,2001,263(2): 501-509.
[12]WANG Z G, LIU Z H, LI Y C. On the linear combinations of harmonic univalent mappings[J].Journal of Mathematical Analysis and Applications,2013,400(2): 452-459.
[13]ZHU J F. Some estimates for harmonic mappings with given boundary function[J].Journal of Mathematical Analysis and Applications,2014,411(2): 631-638.
[14]SILVERMAN H. Harmonic univalent functions with negative coefficients[J].Journal of Mathematical Analysis and Applications,1998,220(1): 283-289.
[15]SǍLǍGEAN G Ş . Subclasses of univalent functions[C]//Complex Analysis-Fifth Romanian Finish Seminar. Berlin Heidelberg: Springer,1983: 362-372.
[16]JAHANGIRI J M, MURUGUSNDARAMOORTHY G, VIJAKA K. Salagean-type harmonic univalent functions[J]. Southwest Journal of Pure and Applied Mathematics,2002,2: 77-82.
[17]SUBRAMANIAN K G, SUDHARSAN T V, STEPHEN B A, et al. A note on Salagean-type harmonic univalent functions[J].General Mathematics,2008,16(3): 29-40.
[18]KALAJ D, PAVLOVI Ć M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane[J].Annales Academiæ Scientiarum Fennicæ Mathematica,2005,30(1): 159-165.
[19]KNEŽEVIĆ M, MATELJEVIĆ M. On the quasi-isometries of harmonic quasiconformal mappings[J].Journal of Mathematical Analysis and Applications,2007,334(1): 404-413.
[20]PAVLOVIĆ M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Annales Academiæ Scientiarum Fennicæ Mathematica,2002,27(2): 365-372.
[21]JAHANGIRI J M , SILVERMAN H. Harmonic close-to-convex mappings[J].Journal of Applied Mathematics and Stochastic Analysis,2002,15(1): 23-28.
[1] 严浩, 许洪波, 沈英汉, 程学旗. 开放式中文事件检测研究[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 64-71.
[2] 范瑞,蒋品群,曾上游,夏海英,廖志贤,李鹏. 多尺度并行融合的轻量级卷积神经网络设计[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 50-59.
[3] 武文雅, 陈钰枫, 徐金安, 张玉洁. 基于高层语义注意力机制的中文实体关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 32-41.
[4] 薛洋,曾庆科,夏海英,王文涛. 基于卷积神经网络超分辨率重建的遥感图像融合[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟春梅, 陆世银, 梁永红, 莫肖敏, 李卫东, 黄远洁, 成晓静, 苏志恒, 郑华. 岩黄连总碱诱导肝星状细胞凋亡和自噬的电镜实验研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 76 -79 .
[2] 李钰慧, 陈泽柠, 黄中豪, 周岐海. 广西弄岗熊猴的雨季活动时间分配[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 80 -86 .
[3] 覃盈盈, 漆光超, 梁士楚. 凤眼莲组织浸提液对靖西海菜花种子萌发的影响[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 87 -92 .
[4] 包金萍, 郑连斌, 宇克莉, 宋雪, 田金源, 董文静. 大凉山彝族成人皮褶厚度特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 107 -112 .
[5] 林永生, 裴建国, 邹胜章, 杜毓超, 卢丽. 清江下游红层岩溶及其水化学特征[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 113 -120 .
[6] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[7] 刘铭, 张双全, 何禹德. 基于改进SOM神经网络的异网电信用户细分研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 17 -24 .
[8] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25 -31 .
[9] 黄荣里, 李长友, 汪敏庆. 一类常微分方程的伯恩斯坦定理Ⅱ[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 50 -55 .
[10] 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63 -67 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发