广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (1): 47-53.doi: 10.16088/j.issn.1001-6600.2020.01.006

• • 上一篇    下一篇

${\ell}$n-平坦模的一些结果

王茜1,2*, 王芳贵2, 沈磊2   

  1. 1.四川文理学院数学学院, 四川达州635000;
    2.四川师范大学数学与软件科学学院, 四川成都610066
  • 收稿日期:2018-09-10 出版日期:2020-01-25 发布日期:2020-01-15
  • 通讯作者: 王茜(1990—), 女,四川达州人, 四川文理学院教师。E-mail:xwang1233@163.com
  • 基金资助:
    国家自然科学基金(11671283);四川文理学院科研启动专项(2019KZ007Z)

Results on ${\ell}$n-Flat Modules

WANG Xi1,2*, WANG Fanggui2, SHEN Lei2   

  1. 1. College of Mathematics, Sichuan University of Arts and Science, Dazhou Sichuan 635000, China;
    2. College of Mathematics and Software Science, Sichuan Normal University, Chengdu Sichuan 610066,China
  • Received:2018-09-10 Online:2020-01-25 Published:2020-01-15

摘要: 本文引入并研究了${\ell}$n-平坦模。设R是任何环, n是非负整数, 称右R-模M是${\ell}$n-平坦模, 类指对任何n-余挠左R-模C, 都有TorR1(M,C)=0。本文证明了M是平坦模当且仅当M是${\ell}$n-平坦模且fdRM≤1, ${\ell}$n-平坦模对纯子模以及其对应的纯商模封闭;还证明了C-平坦模与C1-平坦模就是平坦模, 并且当R是整环时, 无挠的C2-平坦模也是平坦模; R的弱整体维数不超过n当且仅当任意右R-模的第n次合冲是${\ell}$n-平坦模;R是von Neumann正则环当且仅当每个右R-模是${\ell}$n-平坦模。

关键词: n-余挠模, ${\ell}$n-内射模, ${\ell}$n-平坦模, 弱整体维数, von Neumann正则环

Abstract: ${\ell}$n-flat module is defined and studied in this paper. A right R-module M is said to be ${\ell}$n-flat provided that TorR1(M, C)=0 for every n-cotorsion left R-module C. It is proved that M is flat if and only if M is ${\ell}$n-flat and fdRM≤1; and ${\ell}$nF is closed with pure submodules and pure quotient modules. Moreover, C1F and CF are identical to the class of flat modules, in addition, if R is domain and every C2-flat module is also flat module. Finally, R has week global dimension ≤n if and only if the n th-syzygy of any right R-module is ${\ell}$n-flat, and R is von Neumann regular ring if and only if every right module is ${\ell}$n-flat module.

Key words: n-cotorsion module, ${\ell}$n-injective module, ${\ell}$n-flat module, weak global dimension, von Neumann regular rings

中图分类号: 

  • O154
[1] 王芳贵. 交换环与星型算子理论[M].北京:科学出版社, 2006.
[2] DING N Q, CHEN J L. On copure flat modules and flat resolvents[J].Communications in Algebra,1996,24(3):1071-1081.
[3] FU X H, DING N Q. On strongly copure flat modules and copure flat dimensions[J].Communications in Algebra,2010,38(12): 4531-4544.
[4] MAO L X, DING N Q. Relative copure injective and copure flat modules[J].Journal of Pure and Applied Algebra, 2007,208(2): 635-646.
[5] ENOCHS E E, JENDA O M G. Copure injective modules[J].Quaestiones Mathematical,1991,14(14): 401-409.
[6] ENOCHS E E, JENDA O M G. Copure injective resolusions, flat resolvents and dimensions[J].Commentationes Mathematicae Universitatis Carolinae,1993,34(2): 203-211.
[7] HARRISON D K. Infinite Abelian groups and homological methods[J].Annals of Mathematics,1959,69(2): 366-391.
[8] FUCHS L. Cotorsion modules over noetherian hereditary rings[J].Houston Journal of Mathematics,1981,3(1): 33-46.
[9] ENOCHS E E, ROZAS J R G, OYONARTE L. Finitely generated cotorsion modules[J].Proceedings of the Edinburgh Mathematical Society,2001,44(1): 143-152.
[10]COUCHOT F. Commutative rings whose cotorsion modules are pure-injective[J].Palestine Journal of Mathematics,2016,5(1): 81-89.
[11]XU J Z. Flat cover of modules[C]//Lecture Notes in Mathematics, 1634. Berlin: Springer, 1996.
[12]MAO L X, DING N Q. The cotorsion dimension of modules and rings[C]//Lecture Notes in Pure and Applied Mathematics, Boca Raton, FL:Chapman & Hall/CRC,2006: 57-73.
[13]ENOCHS E E, HUANG Z Y. Injective envelopes and (Gorenstein) flat covers[J].Algebras and Representation Theory,2012,15(6): 1131-1145.
[14]熊涛. 模类Fn确定的同调理论及其应用[D].成都: 四川师范大学, 2016.
[15]王茜, 王芳贵, 何可. ${\ell}$n-内射模及其刻画[J].四川师范大学学报(自然科学版), 2017, 40(5): 588-592.
[16]GöBEL R, TRLIFAJ J. Approximations and endomorphism algebras of modules[M].Berlin: Walter de Gruyter, 2006.
[17]FIELDHOUSE D J. Character modules, dimension and purity[J].Glasgow Mathematical Journal,1972,13(2): 144-146.
[18]ROTMAN J J. An introduction to homological algebra[M].London: Academic Press,1979.
[19]BASS H. Finitistic dimension and a homological generalization of semi-primary rings[J].Transactions of the American Mathematical Society,1960,95(3): 466-488.
[20]LEE S B. Weak-injective modules[J]. Communications in Algebra,2006,34(1): 361-370.
[1] 梁春梅, 王芳贵, 吴小英. 分次单内射模及其刻画[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 113-120.
[2] 刘天莉莲, 王芳贵, 高增辉. FI-gr-内射模[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 155-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 覃盈盈, 漆光超, 梁士楚. 凤眼莲组织浸提液对靖西海菜花种子萌发的影响[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 87 -92 .
[2] 庄枫红, 马姜明, 张雅君, 苏静, 于方明. 中华水韭对不同光照条件的生理生态响应[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 93 -100 .
[3] 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1 -8 .
[4] 滕志军, 吕金玲, 郭力文, 许媛媛. 基于改进粒子群算法的无线传感器网络覆盖策略[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 9 -16 .
[5] 苗新艳, 张龙, 罗颜涛, 潘丽君. 一类交替变化的竞争—合作混杂种群模型研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 25 -31 .
[6] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 32 -40 .
[7] 黄荣里, 李长友, 汪敏庆. 一类常微分方程的伯恩斯坦定理Ⅱ[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 50 -55 .
[8] 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63 -67 .
[9] 林越,刘廷章,陈一凡,金勇,梁立新. 基于AP-HMM混合模型的充电桩故障诊断[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 25 -33 .
[10] 吴卓玲,赖艳花,杨柳. 不同固定剂对核膜蛋白免疫荧光效果的比较研究[J]. 广西师范大学学报(自然科学版), 2018, 36(1): 121 -125 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发