广西师范大学学报(自然科学版) ›› 2019, Vol. 37 ›› Issue (1): 155-164.doi: 10.16088/j.issn.1001-6600.2019.01.018

• 第二十四届全国信息检索学术会议专栏 • 上一篇    下一篇

FI-gr-内射模

刘天莉莲1, 王芳贵1*, 高增辉2   

  1. 1. 四川师范大学数学与软件科学学院,四川成都610066;
    2. 成都信息工程大学应用数学学院,四川成都610225
  • 收稿日期:2018-01-12 发布日期:2019-01-08
  • 通讯作者: 王芳贵(1955—),男,湖南衡阳人,四川师范大学教授, 博士。 E-mail:wangfg2004@163.com
  • 基金资助:
    国家自然科学基金(11671283,11571164);四川省应用基础研究项目(2017JY0131)

FI-gr-injective Modules

LIU-TIAN Lilian1 , WANG Fanggui1*, GAO Zenghui2   

  1. 1. College of Mathematics and Software Science, Sichuan Normal University, Chengdu Sichuan 610066, China;
    2. College of Applied Mathematics, Chengdu University of Information Technology, Chengdu Sichuan 610225, China
  • Received:2018-01-12 Published:2019-01-08

摘要: 本文引入了FI-gr-内射模及强FI-gr-内射模的概念,并说明它们与分次内射模之间的相互关系。证明了分次环R是分次QF环当且仅当每个分次模是强FI-gr-内射模;设R为左分次凝聚环, 则l.FP-gr-dim(R)≤1当且仅当每个FI-gr-内射模是分次内射模。此外,还证明了l.gr-fiD(R)=sup{gr-pd(L)|L为FP-gr-内射模}。

关键词: FI-gr-内射模, 强FI-gr-内射模, FI-gr-内射维数, FP-gr-内射模

Abstract: In this paper, the notions of FI-gr-injective modules and strongly FI-gr-injective modules are introduced, and the relationship between them and graded injective modules is explained. It is proved that the graded ring R is a gr-QF ring if and only if each graded module is a strongly FI-gr-injective module; suppose R is a left gr-coherent ring, then l.FP-gr-dim(R)≤1 if and only if each FI-gr-injective module is a graded injective module. In addition, it is also proved that l.gr-fiD(R)=sup{gr-pd(L)|L is an FP-gr-injective module}.

Key words: FI-gr-injective modules, strongly FI-gr-injective modules, FI-gr-injective dimensions, FP-gr-injective modules

中图分类号: 

  • O154
[1] STENSTRÖM B. Coherent rings and FP-injective modules[J]. Journal of the London Mathematical Society, 1970, 2(2): 323-329. DOI:10.1112/jlms/s2-2.2.323.
[2] MADDOX B H. Absolutely pure modules[J]. Proceedings of the American Mathematical Society, 1967, 18(1): 155-158. DOI:10.2307/2035245.
[3] MAO L X, DING N Q. FI-injective and FI-flat modules[J]. Journal of Algebra, 2007, 309(1):367-385. DOI:10.1016/j.jalgebra.2006.10.019.
[4] GAO Z H. On n-FI-Injective and n-FI-Flat Modules[J]. Communications in Algebra, 2012, 40(8):2757-2770. DOI:10.1080/00927872.2011.585677.
[5] ASENSIO M J, RAMOS J A L, TORRECILLAS B. FP-gr-injective modules and gr-FC-rings[J]. Algebra and Number Theory, 1999:1-11. DOI:10.1201/9780203903889.ch1.
[6] YANG X Y, LIU Z K. FP-gr-injective modules[J]. Mathematica Journal of Okayama University, 2011,53: 83-100.
[7] MAO L X. Strongly Gorenstein graded modules[J]. Frontiers of Mathematics in China, 2016, 12(1):1-20. DOI:10.1007/s11464-016-0595-y.
[8] NASTASESCU C, OYSTAEYEN F V. Methods of Graded Rings[M]. New York: Springer, 2004:25-286.
[9] ROZAS J G, RAMOS J A L, TORRECILLAS B. On the existence of flat covers in R-gr[J]. Communications in Algebra, 2001, 29(8):3341-3349. DOI:10.1081/AGB-100105025.
[10] OYONARTE L, TORRECILLAS B. Large subdirect products of graded modules[J]. Communications in Algebra, 1999, 27(2): 681-701. DOI:10.1080/00927879908826456.
[11] NASTASESCU C, OYSTAEYEN F V. Graded Ring Theory[M]. New York: North-Holland Publishing Company, 1982:52-61.
[12] MAO L X, DING N Q. Envelopes and covers by modules of finite injective and flat dimensions[J]. Communications in Algebra, 2007,35(3): 833-849. DOI:10.1080/00927870601115757.
[13] HUSSIEN S E D S, EL-SEIDY E, TABARAK M E. Graded injective modules and graded quasi-frobenius rings[J]. Applied Mathematical Sciences, 2015, 9(23): 1113-1123. DOI:10.12988/ams.2015.4121036.
[14] KRASNOVA E N. Graded quasi-Frobenius rings[C]//Proceedings XII International Conference Algebra and Number Theory: Modern Problems and Application, dedicated to 80-th anniversary of Professor V.N.Latyshev. [S.l.:s.n.],2014: 88-90.
[15] 吴娜. FP-gr-投射维数和FP-gr-投射模[D]. 南京:南京师范大学, 2013.
[16] NASTASESCU C. Strongly graded rings of finite groups[J]. Communications in Algebra, 1983, 11(11): 1033-1071. DOI:10.1080/00927872.1983.10487600.
[17] 王芳贵. 交换环与星型算子理论[M]. 北京: 科学出版社, 2006:104-173.
[18] ROTMAN J J. An introduction to homological algebra[M].New York: Springer, 2009:418-421.
[19] KIRKMAN E, KUZMANOVICH J. Matrix subrings having finite global dimension[J]. Journal of Algebra, 1987, 109(1):74-92. DOI:10.1016/0021-8693(87)90165-7.
[20] XU J Z. Flat covers of modules[M]. New York: Springer, 1996:27-28.
[1] 王茜, 王芳贵, 沈磊. ${\ell}$n-平坦模的一些结果[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 47-53.
[2] 梁春梅, 王芳贵, 吴小英. 分次单内射模及其刻画[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 113-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发