|
广西师范大学学报(自然科学版) ›› 2020, Vol. 38 ›› Issue (1): 54-59.doi: 10.16088/j.issn.1001-6600.2020.01.007
孙祚晨, 王麒翰, 龙波涌*
SUN Zuochen, WANG Qihan, LONG Boyong*
摘要: 本文研究一类Salagean型单叶调和函数,得到了这类函数的拟共形性、凸性和卷积性, 改进了相关的结果。
中图分类号:
[1] CLUNIE J, SHEIL-SMALL T. Harmonic univalent functions[J].Annales Academiæ Scientiarum Fennicæ Mathematica,1984,9: 3-25. [2] AL-SHAQSI K, DARUS M, FADIPE-JOSEPH O A. A new subclass of Salagean-type harmonic univalent functions[J].Abstract and Applied Analysis,2010,Art.ID 821531:12. [3] CHEN S L, PONNUSAMY S, WANG X T. Coefficient estimates and Landau-Blochs constant for planar harmonic mappings[J].Bulletin of the Malaysian Mathematical Sciences Society,2011,34(2): 255-265. [4] CHEN X D, FANG A N. Harmonicity of the inverse of a harmonicdiffeomorphism[J].Journal of Mathematical Analysis and Applications,2012,389(1): 647-655. [5] HUANG X Z. Estimates on Bloch constants for planar harmonic mappings[J].Journal of Mathematical Analysis and Applications,2008,337(2): 880-887. [6] JAHANGIRI J M. Harmonic functions starlike in the unit disk[J].Journal of Mathematical Analysis and Applications,1999,235(2): 470-477. [7] JAHANGIRI J M. Coecient bounds and univalence criteria for harmonic functionswith negative coeffcients[J].Annales Universitatis Mariae Curie-Skłodowska Sectio A Mathematica,1998,52(2): 57-66. [8] LI L L, PONNUSAMY S. Solution to an open problem on convolutions of harmonic mappings[J].Complex Variables and Elliptic Equations,2013,58(12): 1647-1653. [9] LIU M S. Landau’s theorems for biharmonic mappings[J].Complex Variables and Elliptic Equations,2008,53(9): 843-855. [10]SILVERMAN H, SILVIA E M. Subclasses of harmonic univalent functions[J].New Zealand Journal of Mathematics,1999,28(2): 275-284. [11]WANG X T, LIANG X Q, ZHANG Y L. Precise coecient estimates for close-to-convex harmonic univalent mappings[J].Journal of Mathematical Analysis and Applications,2001,263(2): 501-509. [12]WANG Z G, LIU Z H, LI Y C. On the linear combinations of harmonic univalent mappings[J].Journal of Mathematical Analysis and Applications,2013,400(2): 452-459. [13]ZHU J F. Some estimates for harmonic mappings with given boundary function[J].Journal of Mathematical Analysis and Applications,2014,411(2): 631-638. [14]SILVERMAN H. Harmonic univalent functions with negative coefficients[J].Journal of Mathematical Analysis and Applications,1998,220(1): 283-289. [15]SǍLǍGEAN G Ş . Subclasses of univalent functions[C]//Complex Analysis-Fifth Romanian Finish Seminar. Berlin Heidelberg: Springer,1983: 362-372. [16]JAHANGIRI J M, MURUGUSNDARAMOORTHY G, VIJAKA K. Salagean-type harmonic univalent functions[J]. Southwest Journal of Pure and Applied Mathematics,2002,2: 77-82. [17]SUBRAMANIAN K G, SUDHARSAN T V, STEPHEN B A, et al. A note on Salagean-type harmonic univalent functions[J].General Mathematics,2008,16(3): 29-40. [18]KALAJ D, PAVLOVI Ć M. Boundary correspondence under quasiconformal harmonic diffeomorphisms of a half-plane[J].Annales Academiæ Scientiarum Fennicæ Mathematica,2005,30(1): 159-165. [19]KNEŽEVIĆ M, MATELJEVIĆ M. On the quasi-isometries of harmonic quasiconformal mappings[J].Journal of Mathematical Analysis and Applications,2007,334(1): 404-413. [20]PAVLOVIĆ M. Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk[J].Annales Academiæ Scientiarum Fennicæ Mathematica,2002,27(2): 365-372. [21]JAHANGIRI J M , SILVERMAN H. Harmonic close-to-convex mappings[J].Journal of Applied Mathematics and Stochastic Analysis,2002,15(1): 23-28. |
[1] | 严浩, 许洪波, 沈英汉, 程学旗. 开放式中文事件检测研究[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 64-71. |
[2] | 范瑞,蒋品群,曾上游,夏海英,廖志贤,李鹏. 多尺度并行融合的轻量级卷积神经网络设计[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 50-59. |
[3] | 武文雅, 陈钰枫, 徐金安, 张玉洁. 基于高层语义注意力机制的中文实体关系抽取[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 32-41. |
[4] | 薛洋,曾庆科,夏海英,王文涛. 基于卷积神经网络超分辨率重建的遥感图像融合[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 33-41. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |