广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 211-217.doi: 10.16088/j.issn.1001-6600.2025031301

• 化学与材料科学 • 上一篇    下一篇

稳定簇基MOF中[Cu10O(OH)12]6+与无序SiF2-6动态关联影响选择性吸附

石磊1, 董求兵2*, 曾明华1,3,4*   

  1. 1.湖北大学 化学化工学院,湖北 武汉 430062;
    2.安徽师范大学 化学与材料科学学院,安徽 芜湖 241000;
    3.广西师范大学 化学与药学学院,广西 桂林 541004;
    4.省部共建药用资源化学与药物分子工程国家重点实验室(广西师范大学),广西 桂林 541004
  • 收稿日期:2025-03-13 修回日期:2025-05-04 出版日期:2026-03-05 发布日期:2026-02-03
  • 通讯作者: 曾明华(1972—),男,湖南邵阳人,广西师范大学教授,博导。E-mail: zmh@mailbox.gxnu.edu.cn; 董求兵(1996—),男,安徽安庆人,安徽师范大学副教授,博士。E-mail: dongqiubing@ahnu.edu.cn
  • 基金资助:
    国家自然科学基金(U23A2080, 22171075, 22401005)

Dynamic Correlation Between [Cu10O(OH)12]6+ and Disordered SiF2-6in Stable Cluster-based MOF and Implications for Selective Adsorption

SHI Lei1, DONG Qiubin2*, ZENG Minghua1,3,4*   

  1. 1. School of Chemistry and Chemical Engineering, Hubei University, Wuhan Hubei 430062, China;
    2. College of Chemistry and Materials Science, Anhui Normal University, Wuhu Anhui 241000, China;
    3. School of Chemistry and Pharmacy Science, Guangxi Normal University, Guilin Guangxi 541004, China;
    4. State Key Laboratory For Chemistry and Molecular Engineering of Medicinal Resources(Guangxi Normal University), Guilin Guangxi 541004
  • Received:2025-03-13 Revised:2025-05-04 Online:2026-03-05 Published:2026-02-03

摘要: 本文以水热稳定的铜簇基金属-有机框架材料{[Cu106-O)(μ3-OH)12(dip)4(H2O)4](H2O)13H2(SiF6)4} (NTU-85)为研究对象,重点探究SiF2-6作为动态抗衡离子的功能特性。单晶结构分析表明,其孔道中SiF2-6阴离子被Cu10簇中的μ3-OH协同孔内晶格水分子和配位水分子以氢键方式固定。加热去除晶格水和配位水后,SiF2-6失去与晶格水及配位水的氢键作用而展示出无序态,但仍与Cu簇保持弱作用并形成动态关联,在葫芦状的微孔(0.48~0.83 nm)环境内充当动态性的电负性识别位点。在OH-位点以及动态SiF2-6的协同作用下,这种复合孔系统在298 K下对可极化的气体小分子表现出优越的吸附性能,如乙炔40.0 cm3/g,二氧化碳36.5 cm3/g,而对具有低可极化率和非极性气体分子展现较低吸附能力,如乙烯24.3 cm3/g、甲烷8.7 cm3/g,氮气1.6 cm3/g。理想吸附溶液理论(IAST)评估了C2H2/C2H4、CO2/CH4和CO2/N2的选择性值分别为12.7、70.1、34.7,表明动态的抗衡SiF2-6离子通过局部静电相互作用或偶极-四极作用对可极化乙炔和二氧化碳具有选择性吸附作用,对极性气体分离技术发展具有一定参考价值。

关键词: 稳定簇基MOF, [Cu10O(OH)12]6+核, SiF2-6抗衡离子, 动态关联, 选择性吸附

Abstract: This study focuses on investigating the functional characteristics of SiF2-6 as a dynamic counterion in a hydrothermally stable copper-cluster-based metal organic framework(MOF) [Cu106-O)(μ3-OH)12(dip)4 (H2O)4](H2O)13H2(SiF6)4(NTU-85). Single-crystal X-ray diffraction analysis reveals that the SiF2-6 anions in the channels are anchored via hydrogen-bonding networks formed by μ3-OH groups of the Cu10 clusters, lattice water molecules, and coordinated water molecules. Upon thermal removal of lattice and coordinated water molecules, the SiF2-6 anions lose hydrogen bonding interactions with these water species, adopting a disordered state while maintaining weak interactions with the Cu clusters, thereby forming a dynamic association. Within the gourd-shaped micropores (0.48~0.83 nm), these anions function as dynamic electronegative recognition sites. Under the synergistic effects of exposed OH- groups and the dynamic SiF2-6 anions, this composite pore system exhibits exceptional adsorption performance at 298 K for polarizable small gas molecules, with uptake capacities of 40.0 cm3/g (C2H2) and 36.5 cm3/g (CO2), and lower uptake for the gas with low polarizability or nonpolar gas, such as C2H4 (24.3 cm3/g), CH4 (8.7 cm3/g), and N2 (1.6 cm3/g) at 298 K. Remarkable selectivities of C2H2/C2H4 (12.7), CO2/CH4 (70.1), and CO2/N2 (34.7) were evaluated by the ideal adsorption solution theory (IAST), which highlights the critical role of counterion SiF2-6 in the capture of polarizable C2H2 and CO2 via localized electrostatic interactions or dipole-quadrupole interaction. It has certain reference value for the development of polar gas separation technology.

Key words: stable cluster-based MOF, [Cu10O(OH)12]6+ core, SiF2-6 counter-ion, dynamic correlation, selective adsorption

中图分类号:  TQ051.8;O647.3

[1] GU C, HOSONO N, ZHENG J J, et al.Design and control of gas diffusion process in a nanoporous soft crystal[J].Science, 2019, 363(6425):387-391.DOI:10.1126/science.aar6833.
[2] ZHOU H, KITAGAWA S.Metal-organic frameworks (MOFs)[J].Chemical Society Reviews, 2014, 43(16):5415-5418.DOI:10.1039/C4CS90059F.
[3] ZHOU H C,LONG J R, YAGHI O M.Introduction to metal-organic frameworks[J].Chemical Reviews, 2012, 112(2):673-674.DOI:10.1021/cr300014x.
[4] ROHDE R C, CARSCH K M, DODS M N, et al.High-temperature carbon dioxide capture in a porous material with terminal zinc hydride sites[J].Science, 2024, 386(6723):814-819.DOI:10.1126/science.adk5697.
[5] YADAV A K, GŁADYSIAK A, SONG A Y, et al.Sequential pore functionalization in MOFs for enhanced carbon dioxide capture[J].JACS Au, 2024, 4(12):4833-4843.DOI:10.1021/jacsau.4c00808.
[6] WEN K S, ZHOU J Y, KE T, et al.Metal-organic framework with constrained flexibility for benchmark separation of hexane isomers[J].Angewandte Chemie International Edition, 2025, 64(12):e202500519.DOI:10.1002/anie.202500519.
[7] WU S F, YUAN B Z, WANG L W.MOF-ammonia working pairs in thermal energy conversion and storage[J].Nature Reviews Materials, 2023, 8(10):636-638.DOI:10.1038/s41578-023-00593-7.
[8] 曾明华, 李丹丹, 殷政, 等.刚性柱双π墙金属有机框架:单晶到单晶结构转换, 碘富集与缓释, 协同导电性研究[J].广西师范大学学报(自然科学版), 2012, 30(3):171-177.DOI:10.16088/j.issn.1001-6600.2012.03.015.
[9] ZENG H, XIE M, HUANG Y L, et al.Induced fit of C2H2 in a flexible MOF through cooperative action of open metal sites[J].Angewandte Chemie International Edition, 2019, 58(25):8515-8519.DOI:10.1002/anie.201904160.
[10] DUAN Y F, HUANG Y H, WANG C Q, et al.Formation and fine-tuning of metal-organic frameworks with carboxylic pincers for the recognition of a C2H2 tetramer and highly selective separation of C2H2/C2H4[J].Chemical Science, 2023, 14(17):4605-4611.DOI:10.1039/d3sc00877k.
[11] BURTCH N C, JASUJA H, WALTON K S.Water stability and adsorption in metal-organic frameworks[J].Chemical Reviews, 2014, 114(20):10575-10612.DOI:10.1021/cr5002589.
[12] LU Y Y, ZHOU H J, YANG H, et al.Anisotropy of metal-organic framework and their composites:properties, synthesis, and applications[J].Journal of Materials Chemistry A, 2024, 12(11):6243-6260.DOI:10.1039/D3TA08099D.
[13] YU M H, GENG L, CHANG Z, et al.Coordination bonding directed molecular assembly toward functional metal-organic frameworks:from structural regulation to properties modulation[J].Accounts of Materials Research, 2023, 4(10):839-853.DOI:10.1021/accountsmr.3c00097.
[14] FENG L, WANG K Y, DAY G S, et al.Destruction of metal-organic frameworks:positive and negative aspects of stability and lability[J].Chemical Reviews, 2020, 120(23):13087-13133.DOI:10.1021/acs.chemrev.0c00722.
[15] 曹尘, 赵宗丹, 段正洋.功能化金属有机框架材料(MOFs)在含重金属废水中的应用[J].材料科学, 2024, 14(10):1469-1479.
[16] LIANG W B, XU H S, CARRARO F, et al.Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks[J].Journal of the American Chemical Society, 2019, 141(6):2348-2355.DOI:10.1021/jacs.8b10302.
[17] KÖKÇAM-DEMIR Ü, GOLDMAN A, ESRAFILI L, et al.Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks:design and applications[J].Chemical Society Reviews, 2020, 49(9):2751-2798.DOI:10.1039/C9CS00609E.
[18] WU D, ZHANG P F, YANG G P, et al.Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications[J].Coordination Chemistry Reviews, 2021, 434:213709.DOI:10.1016/j.ccr.2020.213709.
[19] KIM H, SEO Y, PARK J, et al.A gate-opening control strategyvia nitrate-chloride anion exchange for enhanced hydrogen isotope separation in metal-organic frameworks[J].Angewandte Chemie International Edition, 2025, 64(11):e202421756.DOI:10.1002/anie.202421756.
[20] TANG J, SHEN Y B, HE X G, et al.Tuning multiple counter-anions in porous coordination polymers with lcy topology for acetylene/ethylene separation[J].Inorganic Chemistry, 2024, 63(8):3667-3674.DOI:10.1021/acs.inorgchem.3c03182.
[21] SUN M Y, WANG X Z, CHEN Z Y, et al.Assembly of metal-organic frameworks of SiF2-6 in situ formed from borosilicate glass[J].Inorganic Chemistry, 2019, 58(19):12501-12505.DOI:10.1021/acs.inorgchem.9b01732.
[22] DONG Q B, HUANG Y H, HYEON-DEUK K, et al.Shape- and size-dependent kinetic ethylene sieving from a ternary mixture by a trap-and-flow channel crystal[J].Advanced Functional Materials, 2022, 32(38):2203745.DOI:10.1002/adfm.202203745.
[23] BELOF J L, STERN A C, EDDAOUDI M, et al.On the mechanism of hydrogen storage in a metal-organic framework material[J].Journal of the American Chemical Society, 2007, 129(49):15202-15210.DOI:10.1021/ja0737164.
[24] BURD S D, MA S Q, PERMAN J A, et al.Highly selective carbon dioxide uptake by[Cu(bpy-n)2(SiF6)] (bpy-1=4, 4’-bipyridine; bpy-2=1, 2-bis(4-pyridyl)ethene)[J].Journal of the American Chemical Society, 2012, 134(8):3663-3666.DOI:10.1021/ja211340t.
[25] DONG Q B, HUANG Y H, WAN J M, et al.Confining water nanotubes in a Cu10O13-based metal-organic framework for propylene/propane separation with record-high selectivity[J].Journal of the American Chemical Society, 2023, 145(14):8043-8051.DOI:10.1021/jacs.3c00515.
[26] LIN R B, LI L B, WU H, et al.Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material[J].Journal of the American Chemical Society, 2017, 139(23):8022-8028.DOI:10.1021/jacs.7b03850.
[27] PEI J Y, SHAO K, WANG J X, et al.A chemically stable Hofmann-type metal-organic framework with sandwich-like binding sites for benchmark acetylene capture[J].Advanced Materials, 2020, 32(24):1908275.DOI:10.1002/adma.201908275.
[28] LEE J, CHUAH C Y, KIM J, et al.Separation of acetylene from carbon dioxide and ethylene by a water-stable microporous metal-organic framework with aligned imidazolium groups inside the channels[J].Angewandte Chemie International Edition, 2018, 57(26):7869-7873.DOI:10.1002/anie.201804442.
[29] ZHANG Y B, HU J B, KRISHNA R, et al.Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene[J].Angewandte Chemie International Edition, 2020, 59(40):17664-17669.DOI:10.1002/anie.202007681.
[1] 付佳慧, 王威, 邓华, 赵栋, 张舒云, 叶顺云, 胡乐宁. 赤泥-聚丙烯酸-羧甲基纤维素水凝胶对水中Pb2+吸附研究[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 150-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[2] 徐秀虹, 张进燕, 卢羽玲, 梁小平, 廖广凤, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 1 -16 .
[3] 王星宇, 郑浩楠, 刘肖, 崔世龙, 蔡进军. 壳聚糖基吸附材料的制备及其吸附去除水中污染物的研究进展[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 17 -30 .
[4] 田晟, 冯帅涛, 李嘉. 一种基于复合框架的城市道路场景车辆轨迹提取方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 31 -51 .
[5] 吕辉, 司可. 基于改进RT-DETR的光伏板缺陷检测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 52 -64 .
[6] 宋冠武, 李建军. 基于自蒸馏边缘细化的遥感图像语义分割[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 65 -76 .
[7] 王旭阳, 梁宇航. 多尺度非对称注意力遥感去雾Transformer[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 77 -89 .
[8] 张胜伟, 曹洁. 融合傅里叶卷积与差异感知的钢材表面微小缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 90 -102 .
[9] 王巍, 李智威, 张赵阳, 张洪, 周蠡, 王振, 黄放, 王灿. 基于IFA-BP神经网络模型的变电站碳排放预测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 103 -114 .
[10] 罗缘, 朱文忠, 王文, 吴宇浩. 基于改进PatchTST的多步水质预测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 115 -131 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发