|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 211-217.doi: 10.16088/j.issn.1001-6600.2025031301
石磊1, 董求兵2*, 曾明华1,3,4*
SHI Lei1, DONG Qiubin2*, ZENG Minghua1,3,4*
摘要: 本文以水热稳定的铜簇基金属-有机框架材料{[Cu10(μ6-O)(μ3-OH)12(dip)4(H2O)4](H2O)13H2(SiF6)4} (NTU-85)为研究对象,重点探究SiF2-6作为动态抗衡离子的功能特性。单晶结构分析表明,其孔道中SiF2-6阴离子被Cu10簇中的μ3-OH协同孔内晶格水分子和配位水分子以氢键方式固定。加热去除晶格水和配位水后,SiF2-6失去与晶格水及配位水的氢键作用而展示出无序态,但仍与Cu簇保持弱作用并形成动态关联,在葫芦状的微孔(0.48~0.83 nm)环境内充当动态性的电负性识别位点。在OH-位点以及动态SiF2-6的协同作用下,这种复合孔系统在298 K下对可极化的气体小分子表现出优越的吸附性能,如乙炔40.0 cm3/g,二氧化碳36.5 cm3/g,而对具有低可极化率和非极性气体分子展现较低吸附能力,如乙烯24.3 cm3/g、甲烷8.7 cm3/g,氮气1.6 cm3/g。理想吸附溶液理论(IAST)评估了C2H2/C2H4、CO2/CH4和CO2/N2的选择性值分别为12.7、70.1、34.7,表明动态的抗衡SiF2-6离子通过局部静电相互作用或偶极-四极作用对可极化乙炔和二氧化碳具有选择性吸附作用,对极性气体分离技术发展具有一定参考价值。
中图分类号: TQ051.8;O647.3
| [1] GU C, HOSONO N, ZHENG J J, et al.Design and control of gas diffusion process in a nanoporous soft crystal[J].Science, 2019, 363(6425):387-391.DOI:10.1126/science.aar6833. [2] ZHOU H, KITAGAWA S.Metal-organic frameworks (MOFs)[J].Chemical Society Reviews, 2014, 43(16):5415-5418.DOI:10.1039/C4CS90059F. [3] ZHOU H C,LONG J R, YAGHI O M.Introduction to metal-organic frameworks[J].Chemical Reviews, 2012, 112(2):673-674.DOI:10.1021/cr300014x. [4] ROHDE R C, CARSCH K M, DODS M N, et al.High-temperature carbon dioxide capture in a porous material with terminal zinc hydride sites[J].Science, 2024, 386(6723):814-819.DOI:10.1126/science.adk5697. [5] YADAV A K, GŁADYSIAK A, SONG A Y, et al.Sequential pore functionalization in MOFs for enhanced carbon dioxide capture[J].JACS Au, 2024, 4(12):4833-4843.DOI:10.1021/jacsau.4c00808. [6] WEN K S, ZHOU J Y, KE T, et al.Metal-organic framework with constrained flexibility for benchmark separation of hexane isomers[J].Angewandte Chemie International Edition, 2025, 64(12):e202500519.DOI:10.1002/anie.202500519. [7] WU S F, YUAN B Z, WANG L W.MOF-ammonia working pairs in thermal energy conversion and storage[J].Nature Reviews Materials, 2023, 8(10):636-638.DOI:10.1038/s41578-023-00593-7. [8] 曾明华, 李丹丹, 殷政, 等.刚性柱双π墙金属有机框架:单晶到单晶结构转换, 碘富集与缓释, 协同导电性研究[J].广西师范大学学报(自然科学版), 2012, 30(3):171-177.DOI:10.16088/j.issn.1001-6600.2012.03.015. [9] ZENG H, XIE M, HUANG Y L, et al.Induced fit of C2H2 in a flexible MOF through cooperative action of open metal sites[J].Angewandte Chemie International Edition, 2019, 58(25):8515-8519.DOI:10.1002/anie.201904160. [10] DUAN Y F, HUANG Y H, WANG C Q, et al.Formation and fine-tuning of metal-organic frameworks with carboxylic pincers for the recognition of a C2H2 tetramer and highly selective separation of C2H2/C2H4[J].Chemical Science, 2023, 14(17):4605-4611.DOI:10.1039/d3sc00877k. [11] BURTCH N C, JASUJA H, WALTON K S.Water stability and adsorption in metal-organic frameworks[J].Chemical Reviews, 2014, 114(20):10575-10612.DOI:10.1021/cr5002589. [12] LU Y Y, ZHOU H J, YANG H, et al.Anisotropy of metal-organic framework and their composites:properties, synthesis, and applications[J].Journal of Materials Chemistry A, 2024, 12(11):6243-6260.DOI:10.1039/D3TA08099D. [13] YU M H, GENG L, CHANG Z, et al.Coordination bonding directed molecular assembly toward functional metal-organic frameworks:from structural regulation to properties modulation[J].Accounts of Materials Research, 2023, 4(10):839-853.DOI:10.1021/accountsmr.3c00097. [14] FENG L, WANG K Y, DAY G S, et al.Destruction of metal-organic frameworks:positive and negative aspects of stability and lability[J].Chemical Reviews, 2020, 120(23):13087-13133.DOI:10.1021/acs.chemrev.0c00722. [15] 曹尘, 赵宗丹, 段正洋.功能化金属有机框架材料(MOFs)在含重金属废水中的应用[J].材料科学, 2024, 14(10):1469-1479. [16] LIANG W B, XU H S, CARRARO F, et al.Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks[J].Journal of the American Chemical Society, 2019, 141(6):2348-2355.DOI:10.1021/jacs.8b10302. [17] KÖKÇAM-DEMIR Ü, GOLDMAN A, ESRAFILI L, et al.Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks:design and applications[J].Chemical Society Reviews, 2020, 49(9):2751-2798.DOI:10.1039/C9CS00609E. [18] WU D, ZHANG P F, YANG G P, et al.Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications[J].Coordination Chemistry Reviews, 2021, 434:213709.DOI:10.1016/j.ccr.2020.213709. [19] KIM H, SEO Y, PARK J, et al.A gate-opening control strategyvia nitrate-chloride anion exchange for enhanced hydrogen isotope separation in metal-organic frameworks[J].Angewandte Chemie International Edition, 2025, 64(11):e202421756.DOI:10.1002/anie.202421756. [20] TANG J, SHEN Y B, HE X G, et al.Tuning multiple counter-anions in porous coordination polymers with lcy topology for acetylene/ethylene separation[J].Inorganic Chemistry, 2024, 63(8):3667-3674.DOI:10.1021/acs.inorgchem.3c03182. [21] SUN M Y, WANG X Z, CHEN Z Y, et al.Assembly of metal-organic frameworks of SiF2-6 in situ formed from borosilicate glass[J].Inorganic Chemistry, 2019, 58(19):12501-12505.DOI:10.1021/acs.inorgchem.9b01732. [22] DONG Q B, HUANG Y H, HYEON-DEUK K, et al.Shape- and size-dependent kinetic ethylene sieving from a ternary mixture by a trap-and-flow channel crystal[J].Advanced Functional Materials, 2022, 32(38):2203745.DOI:10.1002/adfm.202203745. [23] BELOF J L, STERN A C, EDDAOUDI M, et al.On the mechanism of hydrogen storage in a metal-organic framework material[J].Journal of the American Chemical Society, 2007, 129(49):15202-15210.DOI:10.1021/ja0737164. [24] BURD S D, MA S Q, PERMAN J A, et al.Highly selective carbon dioxide uptake by[Cu(bpy-n)2(SiF6)] (bpy-1=4, 4’-bipyridine; bpy-2=1, 2-bis(4-pyridyl)ethene)[J].Journal of the American Chemical Society, 2012, 134(8):3663-3666.DOI:10.1021/ja211340t. [25] DONG Q B, HUANG Y H, WAN J M, et al.Confining water nanotubes in a Cu10O13-based metal-organic framework for propylene/propane separation with record-high selectivity[J].Journal of the American Chemical Society, 2023, 145(14):8043-8051.DOI:10.1021/jacs.3c00515. [26] LIN R B, LI L B, WU H, et al.Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material[J].Journal of the American Chemical Society, 2017, 139(23):8022-8028.DOI:10.1021/jacs.7b03850. [27] PEI J Y, SHAO K, WANG J X, et al.A chemically stable Hofmann-type metal-organic framework with sandwich-like binding sites for benchmark acetylene capture[J].Advanced Materials, 2020, 32(24):1908275.DOI:10.1002/adma.201908275. [28] LEE J, CHUAH C Y, KIM J, et al.Separation of acetylene from carbon dioxide and ethylene by a water-stable microporous metal-organic framework with aligned imidazolium groups inside the channels[J].Angewandte Chemie International Edition, 2018, 57(26):7869-7873.DOI:10.1002/anie.201804442. [29] ZHANG Y B, HU J B, KRISHNA R, et al.Rational design of microporous MOFs with anionic boron cluster functionality and cooperative dihydrogen binding sites for highly selective capture of acetylene[J].Angewandte Chemie International Edition, 2020, 59(40):17664-17669.DOI:10.1002/anie.202007681. |
| [1] | 付佳慧, 王威, 邓华, 赵栋, 张舒云, 叶顺云, 胡乐宁. 赤泥-聚丙烯酸-羧甲基纤维素水凝胶对水中Pb2+吸附研究[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 150-162. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |