|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 33-44.doi: 10.16088/j.issn.1001-6600.2025030701
张竹露, 李华强*, 刘洋, 许立雄
ZHANG Zhulu, LI Huaqiang*, LIU Yang, XU Lixiong
摘要: 通过非侵入式负荷监测(non-intrusive load monitoring,NILM)对负荷能耗进行实时监测和数据分析,能够实现能源合理配置和精细化管理。为了提高负荷标注数据不足情况下NILM的负荷识别效果,本文提出一种基于Bi-LSTM特征融合和微调小样本学习(fine-tuned few-shot learning,FT-FSL)的新方法应用于NILM。首先,通过Bi-LSTM将加权像素电压-电流(voltage-current,V-I)图像特征和多维时频序列特征进行融合;然后,通过FT-FSL使负荷分类模型能够基于少量标注数据进行训练;最后,在PLAID数据集上与4种主流FSL方法(包括匹配网络、原型网络、关系网络和MAML)进行对比实验。结果表明,本文方法的准确率达到92.46%,与对比模型相比,分别提高12.21个百分点、4.18个百分点、5.90个百分点和9.04个百分点,验证了本文方法能够有效识别标注数据不足的负荷类型。
中图分类号: TM714
| [1] 谭全伟, 薛贵军, 谢文举. 基于VMD和RDC-Informer的短期供热负荷预测模型[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 39-51. DOI: 10.16088/j.issn.1001-6600.2023082702. [2] 李云卿. 系统推进“十四五” 时期电力需求侧管理高质量发展[J]. 电力需求侧管理, 2021, 23(1): 1-3. DOI: 10.3969/j.issn.1009-1831.2021.01.001. [3] GOPINATH R, KUMAR M, JOSHUA C P C, et al. Energy management using non-intrusive load monitoring techniques-State-of-the-art and future research directions[J]. Sustainable Cities and Society, 2020, 62: 102411. DOI: 10.1016/j.scs.2020.102411. [4] 余贻鑫, 刘博, 栾文鹏. 非侵入式居民电力负荷监测与分解技术[J]. 南方电网技术, 2013, 7(4): 1-5. DOI: 10.13648/j.cnki.issn1674-0629.2013.04.004. [5] ANGELIS G F, TIMPLALEXIS C, KRINIDIS S, et al. NILM applications: literature review of learning approaches, recent developments and challenges[J]. Energy and Buildings, 2022, 261: 111951. DOI: 10.1016/j.enbuild.2022.111951. [6] YIN H, ZHOU K L, YANG S L. Non-intrusive load monitoring by load trajectory and multi-feature based on DCNN[J]. IEEE Transactions on Industrial Informatics, 2023, 19(10): 10388-10400. DOI: 10.1109/TII.2023.3240924. [7] 韩林池, 高放, 赵子巍, 等. 基于多尺度卷积与Informer混合模型的非侵入式负荷监测方法[J]. 电力自动化设备, 2024, 44(3): 134-141. DOI: 10.16081/j.epae.202306017. [8] LE TT H, HEO S, KIM H. Toward load identification based on the Hilbert transform and sequence to sequence long short-term memory[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3252-3264. DOI: 10.1109/TSG.2021.3066570. [9] DU L, HE D W, HARLEY R G, et al. Electric load classification by binary voltage-current trajectory mapping[J]. IEEE Transactions on Smart Grid, 2016, 7(1): 358-365. DOI: 10.1109/TSG.2015.2442225. [10] DE BAETS L, RUYSSINCK J, DEVELDER C, et al. Appliance classification using VI trajectories and convolutional neural networks[J]. Energy and Buildings, 2018, 158: 32-36. DOI: 10.1016/j.enbuild.2017.09.087. [11] 王守相, 郭陆阳, 陈海文, 等. 基于特征融合与深度学习的非侵入式负荷辨识算法[J]. 电力系统自动化, 2020, 44(9): 103-110. DOI: 10.7500/AEPS20190625010. [12] CHEN T, QIN H Y, LI X S, et al. A non-intrusive load monitoring method based on feature fusion and SE-ResNet[J]. Electronics, 2023, 12(8): 1909. DOI: 10.3390/electronics12081909. [13] 杨舒惠, 黎静华, 韦善阳. 基于图像分类网络的非侵入式负荷辨识算法的运算成本优化[J]. 电力自动化设备, 2024, 44(1): 141-146. DOI: 10.16081/j.epae.202303045. [14] KASELIMI M, DOULAMIS N, VOULODIMOS A, et al. Context aware energy disaggregation using adaptive bidirectional LSTM models[J]. IEEE Transactions on Smart Grid, 2020, 11(4): 3054-3067. DOI: 10.1109/TSG.2020.2974347. [15] RAFIQ H, SHI X H, ZHANG H X, et al. Generalizability improvement of deep learning-based non-intrusive load monitoring system using data augmentation[J]. IEEE Transactions on Smart Grid, 2021, 12(4): 3265-3277. DOI: 10.1109/TSG.2021.3082622. [16] LIU Y Y, ZHONG L, QIU J, et al. Unsupervised domain adaptation for nonintrusive load monitoring via adversarial and joint adaptation network[J]. IEEE Transactions on Industrial Informatics, 2022, 18(1): 266-277. DOI: 10.1109/TII.2021.3065934. [17] GIDARIS S, KOMODAKIS N. Dynamic few-shot visual learning without forgetting[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 4367-4375. DOI: 10.1109/CVPR.2018.00459. [18] CHEN C, LI K L, WEI W, et al. Hierarchical graph neural networks for few-shot learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(1): 240-252. DOI: 10.1109/TCSVT.2021.3058098. [19] 曾武, 毛国君. 多尺度特征聚合的小样本学习方法[J]. 计算机工程与应用, 2023, 59(15): 151-159. DOI: 10.3778/j.issn.1002-8331.2204-0278. [20] HAN Y H, GAO Q, CHEN H Q, et al. A few-shot learning method for nonintrusive load monitoring with V-I trajectory features[J]. IEEE Sensors Journal, 2024, 24(7): 11867-11877. DOI: 10.1109/JSEN.2024.3365132. [21] LUO Q Q, YU T, LAN C F, et al. A generalizable method for practical non-intrusive load monitoring via metric-based meta-learning[J]. IEEE Transactions on Smart Grid, 2024, 15(1): 1103-1115. DOI: 10.1109/TSG.2023.3263814. [22] CHEN W Y, LIU Y C, KIRA Z, et al. A closer look at few-shot classification[EB/OL]. (2020-01-12)[2025-05-08]. https://arxiv.org/abs/1904.04232. DOI: 10.48550/arXiv.1904.04232. [23] MEDICO R, DE BAETS L, GAO J K, et al. A voltage and current measurement dataset for plug load appliance identification in households[J]. Scientific Data, 2020, 7: 49. DOI: 10.1038/s41597-020-0389-7. [24] DE BAETS L, DHAENE T, DESCHRIJVER D, et al. VI-based appliance classification using aggregated power consumption data[C]//2018 IEEE International Conference on Smart Computing (SMARTCOMP).Piscataway,NJ:IEEE, 2018: 179-186. DOI: 10.1109/SMARTCOMP.2018.00089. [25] ALSHAREEF S, MORSI W G. Application of wavelet-based ensemble tree classifier for non-intrusive load monitoring[C]//2015 IEEE Electrical Power and Energy Conference (EPEC).Piscataway,NJ:IEEE, 2015: 397-401. DOI: 10.1109/EPEC.2015.7379983. [26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/CVPR.2016.90. [27] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115. DOI: 10.1609/aaai.v35i12.17325. [28] NIE W Z, YAN Y,SONG D, et al. Multi-modal feature fusion based on multi-layers LSTM for video emotion recognition[J]. Multimedia Tools and Applications, 2021, 80(11): 16205-16214. DOI: 10.1007/s11042-020-08796-8. |
| No related articles found! |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |