|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (6): 174-187.doi: 10.16088/j.issn.1001-6600.2025040302
陈海裕, 李玖一, 徐华英, 聂锦涛, 王倩, 马宁, 王亚男*
CHEN Haiyu, LI Jiuyi, XU Huaying, NIE Jintao, WANG Qian, MA Ning, WANG Yanan*
摘要: 基于网络药理学、分子对接与体外实验研究相结合策略,探究密花香薷挥发油(essential oils of Elsholtzia densa Benth.,EOE)及其核心活性成分对肝细胞癌(HCC)细胞系SMMC-7721细胞的抑制作用及潜在机制。GC-MS鉴定出EOE含有22种成分,其中玫瑰呋喃环氧化物(33.99%)、D-柠檬烯(D-LIM,32.20%)和紫苏醛(PAH,14.52%)为主要成分。网络药理学筛选出14种活性成分,共涉及123个HCC靶点,核心活性成分包括PAH、D-LIM和芳樟醇(LNL),通过靶向TNF、IL1B、ESR1和MAPK3等核心蛋白来调控癌症通路、PI3K-Akt信号传导及细胞凋亡进程。体外实验证实,EOE及其核心活性成分PAH、D-LIM和LNL均能浓度依赖性地抑制SMMC-7721细胞的增殖,处理24 h后的IC50分别为87.4、89.7、121.9和418.7 μg/mL,且EOE、PAH和D-LIM能够上调Bax和Caspase3/9表达,下调Bcl-2、MMP9和CD44蛋白表达,从而促进细胞凋亡并抑制迁移。结果表明,EOE及其核心活性成分PAH和D-LIM可通过诱导凋亡、抑制增殖和迁移对SMMC-7721细胞发挥抑制作用。
中图分类号: R735.7
| [1] KOTSARI M, DIMOPOULOU V, KOSKINAS J, et al. Immune system and hepatocellular carcinoma (HCC): new insights into HCC progression[J]. International Journal of Molecular Sciences, 2023, 24(14): 11471. DOI: 10.3390/ijms241411471. [2] HWANG S Y, DANPANICHKUL P, AGOPIAN V, et al. Hepatocellular carcinoma: updates on epidemiology, surveillance, diagnosis and treatment[J]. Clinical and Molecular Hepatology, 2025, 31(Suppl): S228-S254. DOI: 10.3350/cmh.2024.0824. [3] GAO S, JIANG X Y, WANG L, et al. The pathogenesis of liver cancer and the therapeutic potential of bioactive substances[J]. Frontiers in Pharmacology, 2022, 13: 1029601. DOI: 10.3389/fphar.2022.1029601. [4] WANG Y Q, LI J Y, XIA L J. Plant-derived natural products and combination therapy in liver cancer[J]. Frontiers in Oncology, 2023, 13: 1116532. DOI: 10.3389/fonc.2023.1116532. [5] ZHAO L, ZHANG H, LI N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula[J]. Journal of Ethnopharmacology, 2023, 309: 116306. DOI: 10.1016/j.jep.2023.116306. [6] NOOR F, QAMAR M T U, ALI ASHFAQ U, et al. Network pharmacology approach for medicinal plants: review and assessment[J]. Pharmaceuticals, 2022, 15(5): 572. DOI: 10.3390/ph15050572. [7] 覃业浩, 郭晨静, 吴黎川, 等. 基于UPLC-QTOF-MS、网络药理学和实验验证探讨复方鹿仙草颗粒抗肝癌作用机制[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 221-237. DOI: 10.16088/j.issn.1001-6600.2024080505. [8] 陈海珠. 密花香薷植物学特征及其生长习性的研究[J]. 青海农林科技, 2021(4): 99-103. [9] 孙丽萍, 尹作栋, 傅正生, 等. 密花香薷的化学成分[J]. 植物学报(英文版), 1996, 38(8): 672-676. [10] CHEN S Q, CHEN J X, XU Y F, et al. Elsholtzia: a genus with antibacterial, antiviral, and anti-inflammatory advantages[J]. Journal of Ethnopharmacology, 2022, 297: 115549. DOI: 10.1016/j.jep.2022.115549. [11] 李海赢, 辛文媛, 任秋蓉, 等. 密花香薷挥发油经活性氧-线粒体途径诱导SMMC-7721细胞自噬性死亡[J]. 现代预防医学, 2022, 49(19): 3500-3505. DOI: 10.20043/j.cnki.MPM.202112389. [12] XIN W Y, LI J, MA D W, et al. Chemical composition of the essential oil of whole plant of Elsholtizia dense Benth and its anti-tumor effect on human hepatoma cells[J]. Tropical Journal of Pharmaceutical Research, 2017, 16(3): 627. DOI: 10.4314/tjpr.v16i3.18. [13] TAO J, HUANG J, REN Q R, et al. Network pharmacology-based prediction and verification of flavonoids from Elsholtiza densa Benth. for treating cervical cancer[J]. Russian Journal of Bioorganic Chemistry, 2024, 50(3): 882-895. DOI: 10.1134/S1068162024030142. [14] ZHANG X H, FENG R, TANG Y F, et al. Bioactivities of essential oil extracted from Elsholtzia densa Benth. And its main components against Tribolium castaneum eggs and pupae[J]. Pesticide Biochemistry and Physiology, 2024, 202: 105970. DOI: 10.1016/j.pestbp.2024.105970. [15] WANG Q, WANG X Y, TAO J, et al. Exploring the potential anticancer targets and mechanistic pathways of Elsholtzia densa essential oil based on network pharmacology[J]. Journal of Asian Natural Products Research, 2025, 27(7): 1038-1057. DOI: 10.1080/10286020.2024.2446294. [16] 张继, 王振恒, 姚健, 等. 密花香薷挥发油成分的分析研究[J]. 草业学报, 2005, 14(1): 112-116. [17] 陆梦柯, 王梓琴, 张春, 等. 基于网络药理学与分子对接探讨沙棘抗肥胖作用机制[J]. 食品工业科技, 2024, 45(6): 1-11. DOI: 10.13386/j.issn1002-0306.2023060160. [18] 王笳, 赵联甲, 韩基明, 等. 密花香薷精油的化学成分研究[J]. 中国野生植物资源, 1996, 15(2): 35-36. [19] 郭向阳. 6种食用芳香植物挥发性成分的GC-MS/GC-O分析[J]. 农业工程学报, 2019, 35(18): 299-307. DOI: 10.11975/j.issn.1002-6819.2019.18.036. [20] DURCZYN′SKA Z, Z′UKOWSKA G. Properties and applications of essential oils: a review[J]. Journal of Ecological Engineering, 2024, 25(2): 333-340. DOI: 10.12911/22998993/177404. [21] COZMIN M, LUNGU I I, GUTU C, et al. Turmeric: from spice to cure. A review of the anti-cancer, radioprotective and anti-inflammatory effects of turmeric sourced compounds[J]. Frontiers in Nutrition, 2024, 11: 1399888. DOI: 10.3389/fnut.2024.1399888. [22] NIU J X, LIN Q Z, LI X J, et al. Pickering emulsions stabilized by essential oil-tannin-chitosan particles: microstructure, stability, antibacterial activity, and antioxidant activity[J]. Food Hydrocolloids, 2024, 154: 110145. DOI: 10.1016/j.foodhyd.2024.110145. [23] AWAD M, HASSAN N N, ALFUHAID N A, et al. Insecticidal and biochemical impacts with molecular docking analysis of three essential oils against Spodoptera littoralis (Lepidoptera: Noctuidae)[J]. Crop Protection, 2024, 180: 106659. DOI: 10.1016/j.cropro.2024.106659. [24] RAKA R N, DING Z Q, YUAN Y, et al. Pingyin rose essential oil alleviates LPS-Induced inflammation in RAW 264.7 cells via the NF-κB pathway: an integrated in vitro and network pharmacology analysis[J]. BMC Complementary Medicine and Therapies, 2022, 22(1): 272. DOI: 10.1186/s12906-022-03748-1. [25] ERHUNMWUNSEE F, PAN C, YANG K L, et al. Recent development in biological activities and safety concerns of perillaldehyde from Perilla plants: a review[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(23): 6328-6340. DOI: 10.1080/10408398.2021.1900060. [26] ZHANG Y, LIU S S, FENG Q, et al. Perilaldehyde activates AMP-activated protein kinase to suppress the growth of gastric cancer via induction of autophagy[J]. Journal of Cellular Biochemistry, 2019, 120(2): 1716-1725. DOI: 10.1002/jcb.27491. [27] RODENAK-KLADNIEW B, CASTRO A, STÄRKEL P, et al. Linalool induces cell cycle arrest and apoptosis in HepG2 cells through oxidative stress generation and modulation of Ras/MAPK and Akt/mTOR pathways[J]. Life Sciences, 2018, 199: 48-59. DOI: 10.1016/j.lfs.2018.03.006. [28] SALIM E I, ALABASY M M, EL NASHAR E M, et al. Molecular interactions between metformin and D-limonene inhibit proliferation and promote apoptosis in breast and liver cancer cells[J]. BMC Complementary Medicine and Therapies, 2024, 24(1): 185. DOI: 10.1186/s12906-024-04453-x. [29] BURGERMEISTER E. Mitogen-activated protein kinase and nuclear hormone receptor crosstalk in cancer immunotherapy[J]. International Journal of Molecular Sciences, 2023, 24(17): 13661. DOI: 10.3390/ijms241713661. [30] WU J C, QIAO S, XIANG Y E, et al. Endoplasmic reticulum stress: multiple regulatory roles in hepatocellular carcinoma[J]. Biomedicine & Pharmacotherapy, 2021, 142: 112005. DOI: 10.1016/j.biopha.2021.112005. [31] HUANG P H, CHEN R Y, YANG S T, et al. CPAP promotes HCC malignancy via the TNF-alpha/NF-kappa B and IL-6/STAT3 pathways[J]. Annals of Oncology, 2017, 28: x175. DOI: 10.1093/annonc/mdx679.009. [32] SU B, LUO T, ZHU J J, et al. Interleukin-1β/Iinterleukin-1 receptor-associated kinase 1 inflammatory signaling contributes to persistent Gankyrin activation during hepatocarcinogenesis[J]. Hepatology, 2015, 61(2): 585-597. DOI: 10.1002/hep.27551. [33] GUO Y S, WU G H, YI J R, et al. Anti-hepatocellular carcinoma effect and molecular mechanism of the estrogen signaling pathway[J]. Frontiers in Oncology, 2021, 11: 763539. DOI: 10.3389/fonc.2021.763539. [34] MOON H, RO S W. MAPK/ERK signaling pathway in hepatocellular carcinoma[J]. Cancers, 2021, 13(12): 3026. DOI: 10.3390/cancers13123026. [35] YAN F, WANG X M, PAN C, et al. Down-regulation of extracellular signal-regulated kinase 1/2 activity in P-glycoprotein-mediated multidrug resistant hepatocellular carcinoma cells[J]. World Journal of Gastroenterology, 2009, 15(12): 1443-1451. DOI: 10.3748/wjg.15.1443. [36] LI J B, MA J, WANG K S, et al. Baicalein inhibits TNF-α-induced NF-κB activation and expression of NF-κB-regulated target gene products[J]. Oncology Reports, 2016, 36(5): 2771-2776. DOI: 10.3892/or.2016.5108. [37] LI J, ZHA X M, WANG R, et al. Regulation of CD44 expression by tumor necrosis factor-α and its potential role in breast cancer cell migration[J]. Biomedicine & Pharmacotherapy, 2012, 66(2): 144-150. DOI: 10.1016/j.biopha.2011.11.021. [38] ZHUANG S G, YAN Y, DAUBERT R A, et al. ERK promotes hydrogen peroxide-induced apoptosis through caspase-3 activation and inhibition of Akt in renal epithelial cells[J]. American Journal of Physiology Renal Physiology, 2007, 292(1): F440-F447. DOI: 10.1152/ajprenal.00170.2006. [39] TSENG H C, LEE I T, LIN C C, et al. IL-1β promotes corneal epithelial cell migration by increasing MMP-9 expression through NF-κB- and AP-1-dependent pathways[J]. PLoS One, 2013, 8(3): e57955. DOI: 10.1371/journal.pone.0057955. |
| [1] | 吴黎川, 谈振凯, 覃业浩, 赵续棋, 谢雨心, 黄丽羽, 韦金锐. 槐定碱衍生物抑制肝癌细胞迁移与侵袭研究[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 207-220. |
| [2] | 覃业浩, 郭晨静, 吴黎川, 魏鹏程. 基于UPLC-QTOF-MS、网络药理学和实验验证探讨复方鹿仙草颗粒抗肝癌作用机制[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 221-237. |
| [3] | 张兵, 唐鑫, 陈聪, 宁嘉怡, 周异欢, 年四昀, 余启明, 谭相端. 强肝胶囊治疗非酒精性脂肪性肝病网络药理学研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 206-218. |
| [4] | 吴慧婕, 黄晓梅, 梁芬兰, 黄欣, 雷梦颖, 周艳林, 刘雪梅, 王刚. 黄杜鹃根化学成分及镇痛网络药理学研究[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 147-155. |
| [5] | 梁林盼, 凌雪, 方姣, 苏志恒, 郑华. 基于网络药理学和分子对接探讨瑶山甜茶治疗2型糖尿病的作用机制[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 143-154. |
| [6] | 蒋向辉, 谭荣, 杨永平, 肖清淙. 十大功劳甘草汤治疗肝炎的网络药理学研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 198-209. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |