|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (5): 1-15.doi: 10.16088/j.issn.1001-6600.2024090601
• 综述 • 下一篇
程远林1, 余虎1, 张舒1, 廖兴炜1, 张骁2, 张毅1*, 刘昌会2*
CHENG Yuanlin1, YU Hu1, ZHANG Shu1, LIAO Xingwei1, ZHANG Xiao2, ZHANG Yi1*, LIU Changhui2*
摘要: 精确的清洁能源发电功率预测是实现其高效利用的关键,然而,多种因素导致清洁能源发电功率波动剧烈,给功率预测带来巨大挑战。针对当前清洁能源大规模并网的需求,本文从多个角度探讨清洁能源发电功率预测模型的研究意义及其分类,对人工智能技术在清洁能源发电功率预测领域的最新应用,包括传统机器学习、深度学习和组合方法进行对比和总结。此外,深入分析影响清洁能源接入的关键因素,探讨清洁能源消纳分析模型的技术发展,阐述与预测模型不同的侧重点和发展方向。最后,展望了清洁能源预测与消纳分析模型的未来发展趋势及其日益展现的重要意义。
中图分类号: TK-9
| [1] WANG J X, CHEN L D, TAN Z F, et al. Inherent spatiotemporal uncertainty of renewable power in China[J]. Nature Communications, 2023, 14(1): 5379. DOI: 10.1038/s41467-023-40670-7. [2] 宋敏, 占飞. 我国水能开发现状及发展机遇[J]. 科技创新与应用, 2023,13(19): 25-28. DOI: 10.19981/j.CN23-1581/G3.2023.19.005. [3] 闫文文, 文中, 王爽, 等. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55-68. DOI: 10.16088/j.issn.1001-6600.2023050805. [4] 陈禹, 陈磊, 张怡, 等. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38-57. DOI: 10.16088/j.issn.1001-6600.2024062402. [5] 高贵刚. 清洁能源风光发电预测技术进展综述[J]. 电工技术, 2022(20): 49-52. DOI: 10.19768/j.cnki.dgjs.2022.20.016. [6] 董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951. DOI: 10.13336/j.1003-6520.hve.20220974. [7] 冉靖, 张智刚, 梁志峰, 等. 风电场风速和发电功率预测方法综述[J]. 数理统计与管理, 2020, 39(6): 1045-1059. DOI: 10.13860/j.cnki.sltj.20200930-002. [8] 高强, 朱涛, 钟磊, 等. 地区电网清洁能源发电项目消纳能力研究[J]. 电力学报, 2017, 32(6): 490-496. DOI: 10.13357/j.cnki.jep.002683. [9] ROJAS D, RIVERA M, WHEELER P. Basic principles of solar energy[C]// 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). Piscataway, NJ: IEEE, 2021: 1-6. DOI: 10.1109/CHILECON54041.2021.9703066. [10] ZHANG X G, JIA J R, ZHENG L M, et al. Maximum power point tracking algorithms for wind power generation system: review, comparison and analysis[J]. Energy Science & Engineering, 2023, 11(1): 430-444. DOI: 10.1002/ese3.1313. [11] ALVAREZ G. An optimization model for operations oflarge scale hydro power plants[J]. IEEE Latin America Transactions, 2020, 18(9): 1631-1638. DOI: 10.1109/TLA.2020.9381806. [12] 蔡源, 吴浩, 唐丹. 光伏发电功率预测方法综述[J]. 四川电力技术, 2024, 47(2): 25-31. DOI: 10.16527/j.issn.1003-6954.20240205. [13] IBRAHIM I M, BELANGER J, SHEHATA A S, et al. Enhancement of photovoltaic power farms using a new power prediction approach[J]. International Journal of Energy Research, 2022, 46(4): 4222-4246. DOI: 10.1002/er.7422. [14] ZHAO S L, ZHAO S S. Wind power interval prediction via an integrated variational empirical decomposition deep learning model[J]. Sustainability, 2023, 15(7): 6114. DOI: 10.3390/su15076114. [15] NUNES MACIEL J, JAVIER GIMENEZ LEDESMA J, HIDEO ANDO O Jr. Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation[J]. Renewable and Sustainable Energy Reviews, 2024, 192: 114185. DOI: 10.1016/j.rser.2023.114185. [16] HUANG N T, WU Y Y, LU G B, et al. Combined probability prediction of wind power considering the conflict of evaluation indicators[J]. IEEE Access, 2019, 7: 174709-174724. DOI: 10.1109/ACCESS.2019.2954699. [17] GUPTA A, KUMAR A, BOOPATHI K. Intraday wind power forecasting employing feedback mechanism[J]. Electric Power Systems Research, 2021, 201: 107518. DOI: 10.1016/j.epsr.2021.107518. [18] WANG Y, CHI P, NIE R, et al. A novel fractional discrete grey model with variable weight buffer operator and its applications in renewable energy prediction[J]. Soft Computing, 2023, 27(14): 9321-9345. DOI: 10.1007/s00500-023-08203-y. [19] LUO X L, DUAN H M, HE L. A novelRiccati equation grey model and its application in forecasting clean energy[J]. Energy, 2020, 205: 118085. DOI: 10.1016/j.energy.2020.118085. [20] 杨婷, 陈黎来, 李世纪, 等. 基于主成分分析-线性回归的光伏发电功率预测研究[J]. 南京工程学院学报(自然科学版), 2022, 20(1): 77-83. DOI: 10.13960/j.issn.1672-2558.2022.01.015. [21] 李佳欣, 王智伟. 基于模型预测控制的风光储综合能源系统优化调度[J]. 分布式能源, 2024, 9(1): 43-53. DOI: 10.16513/j.2096-2185.DE.2409106. [22] WANG J M, ZHOU Q W, ZHANG X T. Wind power forecasting based on time series ARMA model[J]. IOP Conference Series: Earth and Environmental Science, 2018, 199: 022015. DOI: 10.1088/1755-1315/199/2/022015. [23] JUNG A H, LEE D H, KIM J Y, et al. Regional photovoltaic power forecasting using vector autoregression model in South Korea[J]. Energies, 2022, 15(21): 7853. DOI: 10.3390/en15217853. [24] BOZORG M, BRACALE A, CARAMIA P, et al. Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting[J]. Protection and Control of Modern Power Systems, 2020, 5(1):21. DOI: 10.1186/s41601-020-00167-7. [25] 杨强, 颜宗辉, 杜秀举, 等. 基于ANN架构的新能源发电预测模型的研究[J]. 电气应用, 2024, 43(2): 76-82. [26] 韩亚军. 基于神经网络的相空间重构短期风速发电功率在线预测[J]. 装备制造技术, 2018(4): 26-29, 44. DOI: 10.3969/j.issn.1672-545X.2018.04.006. [27] HANIFI S, ZARE-BEHTASH H, CAMMARANO A, et al. Offshore wind power forecasting based on WPD andoptimised deep learning methods[J]. Renewable Energy, 2023, 218: 119241. DOI: 10.1016/j.renene.2023.119241. [28] LIU L Q, LI Y. Research on a photovoltaic power prediction model based on an IAO-LSTM optimization algorithm[J]. Processes, 2023, 11(7): 1957. DOI: 10.3390/pr11071957. [29] REN X Y, ZHANG F, YAN J S, et al. A novel convolutional neural net architecture basedon incorporating meteorological variable inputs into ultra-short-term photovoltaic power forecasting[J]. Sustainability, 2024, 16(7): 2786. DOI: 10.3390/su16072786. [30] 田崇翼, 王学睿, 王瑞琪. 基于CEEMD-SVM的风速混合预测模型研究[J]. 计算机时代, 2023(7): 24-28. DOI: 10.16644/j.cnki.cn33-1094/tp.2023.07.006. [31] CHEN Y B, SHI J, CHENG X G, et al. Hybrid models based on LSTM and CNN architecture with Bayesian optimization for ShortTerm photovoltaic power forecasting[C]// 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Piscataway, NJ: IEEE, 2021: 1415-1422. DOI: 10.1109/ICPSAsia52756.2021.9621525. [32] ZHANG J H, ZHAO Z Y, YAN J, et al. Ultra-short-term wind power forecasting based on CGAN-CNN-LSTM model supported by lidar[J]. Sensors, 2023, 23(9): 4369. DOI: 10.3390/s23094369. [33] 刘岩, 李雨森, 张夕佳, 等. 基于粒子群优化算法的可再生能源功率预测模型设计[J]. 电子设计工程, 2023, 31(9): 146-150. DOI: 10.14022/j.issn1674-6236.2023.09.030. [34] ANGIZEH F, BAE J, CHEN J, et al. Impact assessment framework for grid integration of energy storage systems and renewable energy sources toward clean energy transition[J]. IEEE Access, 2023, 11: 134995-135005. [35] LÓPEZ PROL J, DE LLANO PAZ F, CALVO-SILVOSA A, et al. Wind-solar technological, spatial and temporal complementarities in Europe: a portfolio approach[J]. Energy, 2024, 292: 130348. DOI: 10.1016/j.energy.2024.130348. [36] SUN K Q, XIAO H Q, LIU S Y, et al. A review of clean electricity policies: from countries to utilities[J]. Sustainability, 2020, 12(19): 7946. DOI: 10.3390/su12197946. [37] 潘忠志, 孔宁, 王燕涛. 改进清洁能源消纳的配电网资源优化配置研究[J]. 东北电力大学学报, 2023, 43(6): 71-78. DOI: 10.19718/j.issn.1005-2992.2023-06-0071-08. [38] HUANG Y Z, WANG Y X, LI C Y, et al. Physics insight of the inertia of power systems and methods to provide inertial response[J]. CSEE Journal of Power and Energy Systems, 2022, 8(2): 559-568. [39] 王云会, 郑强仁, 郭淼, 等. 分布式电源接入配电网的控制策略及消纳能力评估研究[J]. 电器与能效管理技术, 2022 (4): 83-87. DOI: 10.16628/j.cnki.2095-8188.2022.04.014. [40] WANG Q, LI M, LUO P D, et al. Analysis on the coupling characteristics of frequency stability and voltage stability in weak connected power grid with high ratio of clean energy[J]. Energy Reports, 2022, 8: 1432-1437. DOI: 10.1016/j.egyr.2021.11.118. [41] 孟高军, 张峰, 徐晓轶, 等. 基于网络安全稳定约束的清洁能源消纳能力评估方法[J]. 太阳能学报, 2023, 44(11): 505-512. DOI: 10.19912/j.0254-0096.tynxb.2022-1053. [42] MAIHEMUTI S, WANG W Q, WU J H, et al.New energy power system operation security evaluation based on the SWOT analysis[J]. Scientific Reports, 2022, 12(1): 12680. DOI: 10.1038/s41598-022-16444-4. [43] HU TT, ZHANG B, LIU P Y, et al. Modeling and analysis of distribution network with photovoltaic cells based on Markov global sensitivity[J]. Frontiers in Energy Research, 2024, 12: 1374467. DOI: 10.3389/fenrg.2024.1374467. [44] 刘纯, 屈姬贤, 石文辉. 基于随机生产模拟的清洁能源消纳能力评估方法[J]. 中国电机工程学报, 2020, 40(10): 3134-3144. DOI: 10.13334/j.0258-8013.pcsee.191794. [45] 张真, 李延和, 保积秀, 等. 基于REPS的青海清洁能源消纳能力计算方法研究[J]. 青海电力, 2020, 39(1): 1-6. DOI: 10.15919/j.cnki.qhep.2020.01.001. [46] DOU X, SONG L, ZHANG S N, et al.Multi-time scale trading simulation of source grid load storage based on continuous trading mechanism for China[J]. Sensors, 2022, 22(6): 2363. DOI: 10.3390/s22062363. [47] SUO X, ZHAO S Q, MA Y F. Multipoint layout planning method for multi-energy sources based on time-series production simulation[J]. International Journal of Energy Research, 2022, 46(7): 9323-9344. DOI: 10.1002/er.7808. [48] WANG S R. The time-series production simulation in cost management of new energy grid connection under the internet of things[J]. IEEE Access, 2024, 12: 32369-32380. |
| [1] | 闫文文, 文中, 王爽, 李国祥, 王博宇, 吴艺. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55-68. |
| [2] | 王珊珊, 何嘉文, 吴霓, 朱威, 兰欣. 基于GRA-ISSA-SVR-EC模型的风电功率组合预测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 61-73. |
| [3] | 田晟, 李成伟, 黄伟, 王蕾. 疫情下基于GC-rBPNN模型的公路货运量预测方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 24-32. |
| [4] | 张明宇, 赵猛, 蔡夫鸿, 梁钰, 王鑫红. 基于深度学习的波浪能发电功率预测[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 25-32. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |