广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (4): 147-156.doi: 10.16088/j.issn.1001-6600.2024041702

• 生态环境科学研究 • 上一篇    下一篇

超级电容器用酚醛树脂/竹基复合活性炭的制备及表征

文秀婵1, 张博1, 王玺1, 桂柳成2, 黄思玉1,3*, 何旻雁1,3*   

  1. 1.广西师范大学 环境与资源学院, 广西 桂林 541006;
    2.广西师范大学 化学与药学学院, 广西 桂林 541004;
    3.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006
  • 收稿日期:2024-04-17 修回日期:2024-05-20 出版日期:2025-07-05 发布日期:2025-07-14
  • 通讯作者: 黄思玉(1966—),男,广西桂林人,广西师范大学高级工程师。E-mail: huangsy@gxnu.edu.cn
    何旻雁(1990—),女,广西桂林人,广西师范大学工程师。E-mail: 15296585005@163.com
  • 基金资助:
    国家自然科学基金(22165003)

Preparation and Characterization of Phenolic Resin/Bamboo Based Composite Activated Carbon for Supercapacitors

WEN Xiuchan1, ZHANG Bo1, WANG Xi1, GUI Liucheng2, HUANG Siyu1,3*, HE Mingyan1,3*   

  1. 1. School of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2024-04-17 Revised:2024-05-20 Online:2025-07-05 Published:2025-07-14

摘要: 为探究酚醛树脂添加量对活性炭微观结构及电化学性能的影响,寻找相对经济的制备超级电容器用活性炭的方法,本文以毛竹废弃物为原材料,酚醛树脂为改性剂,通过KOH活化制备酚醛树脂/竹基复合活性炭,并对其进行表征。结果表明:复合活性炭微观结构受酚醛树脂添加量影响,树脂添加量为15%~35%的复合活性炭比表面积及总孔容均增大,平均孔径减小,为电荷的存储提供更多吸附位点。其中,树脂添加量为35%的复合活性炭相较于纯竹基活性炭比表面积及总孔容分别提高28.5%及29.2%,平均孔径减小为1.78 nm,在电流密度为0.5 A·g-1时比电容为263.85 F·g-1,相较纯竹基活性炭提高53.3%,说明加入酚醛树脂后所制备的活性炭电化学性能得到明显改善。

关键词: 复合活性炭, 酚醛树脂, 竹基, 可调控, 微观结构, 超级电容器, 电化学性能

Abstract: To investigate the effect of phenolic resin addition on the microstructure and electrochemical properties of carbon materials, and to obtain a relatively economical method of preparing carbon materials for supercapacitors, phenolic resin/bamboo based composite activated carbon was prepared by KOH activation using bamboo waste as raw material and phenolic resin as modifier. The results showed that the microstructure of the composite activated carbon was affected by the addition of phenolic resin. The specific surface area and total pore volume of the composite activated carbon with the resin addition of 15%~35% increased. The average pore diameter decreased, providing more adsorption sites for storage charge. The specific surface area and total pore volume of the composite activated carbon were increased by 28.5% and 29.2%, respectively, and the average pore size was reduced to 1.78 nm compared with that of the bamboo-based activated carbon when 35% of phenolic resin was added; the specific capacitance at a current density of 0.5 A·g-1 reached 263.85 F·g-1, which was 53.3% higher than bamboo activated carbon. The results indicated that the electrochemical properties of activated carbon prepared by adding phenolic resin were obviously improved.

Key words: composite activated carbon, phenolic resin, bamboo-based, adjustable, microstructure, supercapacitor, electrochemical performance

中图分类号:  TQ424.19;TM533

[1] 赵晓玲,曾丹林,黄刚,等.生物质多孔碳的制备、掺杂及应用[J].化工新型材料,2023,51(7):49-54. DOI: 10.19817/j.cnki.issn1006-3536.2023.07.009.
[2] 曾建强,何明基,李庆余,等.中间相炭微球改性聚苯胺超级电容器电极材料研究[J].广西师范大学学报(自然科学版),2017,35(4):84-90. DOI: 10.16088/j.issn.1001-6600.2017.04.012.
[3] DUBEY R, GURUVIAH V. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics, 2019, 25(4): 1419-1445. DOI: 10.1007/s11581-019-02874-0.
[4] 于娜林,樊丽华,王雪宇,等.添加松木屑对无灰煤基活性炭结构和电化学性能的影响[J].煤炭转化,2023,46(2): 45-52. DOI: 10.19726/j.cnki.ebcc.202302006.
[5] 辛凡文,高山松,郑伦.高温喷雾法制备超级电容器用球形活性炭的研究[J].煤炭工程,2022,54(11):177-181. DOI: 10.11799/ce202211031.
[6] 丁苏雅,马姜明,覃云斌,等.生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J].广西师范大学学报(自然科学版),2024,42(1):180-190. DOI: 10.16088/j.issn.1001-6600.2023020701.
[7] 邱书伟,马琰,吴蕾,等.棉秸秆制备活性炭及其电化学性能[J].化工新型材料,2019,47(4):249-253,257.
[8] AI T, WANG Z, ZHANG H R, et al. Novel synthesis of nitrogen-containing bio-phenol resin and its molten salt activation of porous carbon for supercapacitor electrode[J]. Materials, 2019, 12(12): 1986. DOI: 10.3390/ma12121986.
[9] 吴泽轶,周奇,文博,等.炭材料在锂离子电池负极材料钛酸锂中的应用[J].炭素技术,2020,39(6):6-13,25. DOI: 10.14078/j.cnki.1001-3741.2020.06.002.
[10] 曹俊雅,陈天悦,罗晨辉,等.超级电容器用生物质衍生多孔炭材料研究进展[J].洁净煤技术,2024,30(2):153-174. DOI: 10.13226/j.issn.1006-6772.KD23111002.
[11] 田学坤,王霞,苏凯,等.生物质材料炭化的研究进展及其应用展望[J].工程科学学报,2023,45(12):2026-2036. DOI: 10.13374/j.issn2095-9389.2022.11.11.005.
[12] HUANG W H, LEE D J, HUANG C. Modification on biochars for applications: a research update[J]. Bioresource Technology, 2021, 319: 124100. DOI: 10.1016/j.biortech.2020.124100.
[13] YANG P J, LI T H, LI H, et al. Progress in the graphitization and applications of modified resin carbons[J]. New Carbon Materials, 2023, 38(1): 96-108. DOI: 10.1016/S1872-5805(23)60715-2.
[14] CAI J T, HOU L H, CHEN C, et al. Facile 3D nitrogen-doped hierarchical porous carbon for high-performance supercapacitors[J]. Energy Technology, 2022, 10(10): 2200508. DOI: 10.1002/ente.202200508.
[15] DU X, WANG C Y, CHEN M M, et al. Effects of carbonization temperature on microstructure and electrochemical performances of phenolic resin-based carbon spheres[J]. Journal of Physics and Chemistry of Solids, 2010, 71(3): 214-218. DOI: 10.1016/j.jpcs.2009.11.007.
[16] XIA D, TAN F, ZHANG C P, et al. ZnCl2-activated biochar from biogas residue facilitates aqueous As(III) removal[J]. Applied Surface Science, 2016, 377: 361-369. DOI: 10.1016/j.apsusc.2016.03.109.
[17] LI W, ZHANG L B, PENG J H, et al. Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation[J]. Industrial Crops and Products, 2008, 27(3): 341-347. DOI: 10.1016/j.indcrop.2007.11.011.
[18] JI L K, ZHANG Y Q, LI X P, et al. Coral-like interconnected porous carbon derived from phenolic resin/ammonium alginate composite for high-rate supercapacitor[J]. Journal of Power Sources, 2023, 573: 232933. DOI: 10.1016/j.jpowsour.2023.232933.
[19] GUAN M J, WANG G N, YONG C, et al. A novel composite hard carbon from waste Camellia oleifera shell modified by phenol-formaldehyde resin for supercapacitor electrode with high specific capacitance[J]. Diamond and Related Materials, 2023, 138: 110248. DOI: 10.1016/j.diamond.2023.110248.
[20] LI W, WANG G H, SUI W J, et al. Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes[J]. Carbon, 2022, 196: 819-827. DOI: 10.1016/j.carbon.2022.05.053.
[21] ZHANG Z Q, LI Y D, YANG X M, et al. In-situ confined construction of N-doped compact bamboo charcoal composites for supercapacitors[J]. Journal of Energy Storage, 2023, 62: 106954. DOI: 10.1016/j.est.2023.106954.
[22] YU H, MIKŠÍK F, THU K, et al. Characterization and optimization of pore structure and water adsorption capacity in pinecone-derived activated carbon by steam activation[J]. Powder Technology, 2024,431: 119084. DOI: 10.1016/j.powtec.2023.119084.
[23] 梁淼,张明建,鲁端峰,等.热解温度对竹粉炭理化结构及燃烧性能的影响[J].化工进展,2020,39(1):278-286. DOI: 10.16085/j.issn.1000-6613.2019-0564.
[24] LIU D, LIU Y L, XU G Y, et al. Precisely tuning porosity and outstanding supercapacitor performance of phenolic resin-based carbons via citrate activation[J]. Journal of Energy Storage, 2023, 67: 107610. DOI: 10.1016/j.est.2023.107610.
[25] LOGANATHAN N N, PERUMAL V, PANDIAN B R, et al. Recent studies on polymeric materials for supercapacitor development[J]. Journal of Energy Storage, 2022,49: 104149. DOI: 10.1016/j.est.2022.104149.
[26] HUANG J, XIE Y P, YOU Y, et al. Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization[J]. Advanced Functional Materials, 2023, 33(14): 2213095. DOI: 10.1002/adfm.202213095.
[27] NGUYEN T B, YOON B, NGUYEN T D, et al. A facile salt-templating synthesis route of bamboo-derived hierarchical porous carbon for supercapacitor applications[J]. Carbon, 2023, 206: 383-391. DOI: 10.1016/j.carbon.2023.02.060.
[28] PANG X N, CAO M, QIN J H, et al. Synthesis of bamboo-derived porous carbon: exploring structure change, pore formation and supercapacitor application[J]. Journal of Porous Materials, 2022, 29(2): 559-569. DOI: 10.1007/s10934-021-01181-2.
[29] 王希涛,石春杰,王康.一种酚醛树脂基多孔活性炭小球的制备[J].天津大学学报(自然科学与工程技术版),2018,51(4):389-394. DOI: 10.11784/tdxbz201703029.
[30] 黄坤,许明,吴秀娟,等.生物质活性炭的制备与微结构特性调控研究进展[J].化工进展,2024,43(5):2475-2493. DOI: 10.16085/j.issn.1000-6613.2023-2121.
[31] 李振,尚颖泽,朱张磊,等.煤基碳材料制备与电化学储能应用[J].洁净煤技术,2024,30(5):99-117. DOI: 10.13226/j.issn.1006-6772.23032902.
[32] 钱黎黎,王彦鑫,倪俊,等.生物质水热炭改性方法及应用研究进展[J].煤炭学报,2023,48(6):2279-2290. DOI: 10.13225/j.cnki.jccs.be22.1853.
[33] LI L F, CHANG J M, CAI L P, et al. Activated carbon monolith derived from polymer and fast pyrolyticchar: effect of bio-oil phenol-formaldehyde resin[J]. BioResources, 2017, 12(4): 7975-7985. DOI: 10.15376/biores.12.4.7975-7985.
[34] YANG C S, JANG Y S, JEONG H K. Bamboo-based activated carbon for supercapacitor applications[J]. Current Applied Physics, 2014, 14(12): 1616-1620. DOI: 10.1016/j.cap.2014.09.021.
[35] KUMAR JHA M, SHAH D, MULMI P, et al. Development of activated carbon from bhang (Cannabis) stems for supercapacitor electrodes[J]. Materials Letters, 2023, 344: 134436. DOI: 10.1016/j.matlet.2023.134436.
[36] IRO Z S, SUBRAMANI C, DASH S S. A brief review on electrode materials for supercapacitor[J]. International Journal of Electrochemical Science, 2016, 11(12): 10628-10643. DOI: 10.20964/2016.12.50.
[37] ROSENDAHL S M, BURGESS I J. Electrochemical and infrared spectroscopy studies of 4-mercaptobenzoic acid SAMs on gold surfaces[J]. Electrochimica Acta, 2008, 53(23): 6759-6767. DOI: 10.1016/j.electacta.2007.11.020.
[38] 续士勇,岳劲松,程园,等.褐煤基活性炭的制备及其电化学性能研究[J].煤炭转化,2023,46(1):62-71. DOI: 10.19726/j.cnki.ebcc.202301008.
[39] LIU Y P, ZHAO J L, SONG Y F, et al. Preparation of N-doped porous carbon nanofibers derived from their phenolic-resin-based analogues for high performance supercapacitor[J]. Journal of Electroanalytical Chemistry, 2022, 925: 116869. DOI: 10.1016/j.jelechem.2022.116869.
[40] ZOU Y L, WANG H F, XU L F, et al. Synergistic effect of CO2 and H2O co-activation of Zhundong coal at a low burn-off rate on high performance supercapacitor[J]. Journal of Power Sources, 2023, 556: 232509. DOI: 10.1016/j.jpowsour.2022.232509.
[41] 周琰,胡丽娟,岑美香,等.茶渣衍生多级孔炭的电化学和吸附性能研究[J].稀有金属,2022,46(10):1340-1351. DOI: 10.13373/j.cnki.cjrm.XY22060013.
[42] 刘芳芳,张富硕,孙力,等.磷酸三钾活化合成分级多孔炭及其电化学性能[J].硅酸盐学报,2024,52(5):1631-1642. DOI: 10.14062/j.issn.0454-5648.20230604.
[43] LI X, LI Y L, TIAN X D, et al. Flexible and cross-linked carbon nanofibers based on coal liquefaction residue forhigh rate supercapacitors[J]. Journal of Alloys and Compounds, 2022, 903: 163919. DOI: 10.1016/j.jallcom.2022.163919.
[44] HO H C, NGUYEN N A, MEEK K M, et al. A solvent-free synthesis of lignin-derived renewable carbon with tunable porosity for supercapacitor electrodes[J]. ChemSusChem, 2018, 11(17): 2953-2959. DOI: 10.1002/cssc.201800929.
[45] ZHANG G X, CHEN Y M, CHEN Y G, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors[J]. Materials Research Bulletin, 2018, 102: 391-398. DOI: 10.1016/j.materresbull.2018.03.006.
[1] 覃容华, 宿程远, 陆欣雅, 陈政鹏, 周一杰, 先云川. Cr(Ⅵ)浓度对MFC-颗粒污泥耦合体系运行效能及微生态的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 242-254.
[2] 杨悦强, 祝龙记. 微电网超级电容器混合储能系统控制策略[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 71-80.
[3] 曾建强,何明基,李庆余,黄寒星,丁雪雪,毛全元,钟新仙. 中间相炭微球改性聚苯胺超级电容器电极材料研究[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 何安康, 陈艳平, 扈应, 黄瑞章, 秦永彬. 融合边界交互信息的命名实体识别方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 1 -11 .
[2] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12 -22 .
[3] 齐丹丹, 王长征, 郭少茹, 闫智超, 胡志伟, 苏雪峰, 马博翔, 李时钊, 李茹. 基于主题多视图表示的零样本实体检索方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 23 -34 .
[4] 黄川洋, 程灿儿, 李松威, 陈鸿东, 张秋楠, 张钊, 邵来鹏, 唐剑, 王咏梅, 郭奎奎, 陆航林, 胡君辉. 带涂覆层的长周期光纤光栅温度传感特性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 35 -42 .
[5] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1 -14 .
[6] 黎宗孝, 张健, 罗鑫悦, 赵嶷飞, 卢飞. 基于K-means和Adam-LSTM的机场进场航迹预测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 15 -23 .
[7] 宋铭楷, 朱成杰. 基于H-WOA-GWO和区段修正策略的配电网故障定位研究[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 24 -37 .
[8] 陈禹, 陈磊, 张怡, 张志瑞. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38 -57 .
[9] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58 -68 .
[10] 李志欣, 匡文兰. 结合互注意力空间自适应和特征对集成判别的细粒度图像分类[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 69 -82 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发