广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 9-17.doi: 10.16088/j.issn.1001-6600.2023032702

• 综述 • 上一篇    下一篇

金属/非金属和氮共掺杂生物炭的制备及其在有机污水处理中的应用进展

尹理亚1, 丁开1, 杜文泽1, 芦天亮2, 王剑峰1, 韩丽1,3*   

  1. 1.郑州大学 生态与环境学院,河南 郑州 450001;
    2.郑州大学 化工学院,河南 郑州 450001;
    3.河南省减污降碳协同工程技术研究中心(郑州大学), 河南 郑州 450001
  • 收稿日期:2023-03-27 修回日期:2023-06-06 出版日期:2024-01-25 发布日期:2024-01-19
  • 通讯作者: 韩丽(1974—),女,河南商丘人,郑州大学教授。E-mail:lihan@zzu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2022YFE0208300)

Preparation of Metal/Nonmetal and Nitrogen Co-Doped Biochar and Its Application Progress in Organic Wastewater Treatment

YIN Liya1, DING Kai1, DU Wenze1, LU Tianliang2, WANG Jianfeng1, HAN Li1,3*   

  1. 1. School of Ecology and Environment, Zhengzhou University, Zhengzhou Henan 450001, China;
    2. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450001, China;
    3. Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province (Zhengzhou University), Zhengzhou Henan 450001, China
  • Received:2023-03-27 Revised:2023-06-06 Online:2024-01-25 Published:2024-01-19

摘要: 生物炭作为一种吸附材料在有机废水处理等领域具有广泛应用。使用单一金属/非金属和氮共掺杂,在一定条件下两者之间具有协同作用,可以丰富生物炭表面催化位点,增加催化活性。本文首先概述金属/非金属和氮共掺杂生物炭制备过程的机理,然后重点讨论近几年来金属/非金属和氮共掺杂生物炭在有机污水处理中的应用进展;最后展望金属/非金属和氮共掺杂生物炭的发展方向和应用前景。

关键词: 生物炭, 金属/非金属, 氮掺杂, 共掺杂, 高级氧化技术, 降解

Abstract: As an adsorption material, biochar has been widely used in the field of wastewater treatment. The use of single metal/nonmetal and nitrogen co-doping, under certain conditions, has a synergistic effect between them, which can enrich the catalytic sites on the surface of biochar and increase the catalytic activity. Firstly, the mechanism of the preparation of metal/nonmetal and nitrogen co-doped biochar is summarized. The discussion then focuses on the progress of metal/non-metal and nitrogen co-doped biochar applications in organic wastewater treatment in recent years; Finally, the development direction and application prospect of metal/nonmetal and nitrogen co-doped biochar are prospected.

Key words: biochar, metal/nonmetal, nitrogen doped, co-doped, advanced oxidation technology, degradation

中图分类号:  TQ031.2

[1] 肖彤, 马捷, 王雁, 等. 铁改性掺氮碳纤维活化过一硫酸盐降解双酚A[J]. 环境科学学报, 2021, 41(7): 2766-2773. DOI: 10.13671/j.hjkxxb.2020.0543.
[2] LIN L, YANG H R, XU X C. Effects of water pollution on human health and disease heterogeneity: a review[J]. Frontiers in Environmental Science, 2022, 10: 880246. DOI: 10.3389/fenvs.2022.880246.
[3] VIEIRA W T, DE FARIAS M B, SPAOLONZI M P, et al. Latest advanced oxidative processes applied for the removal of endocrine disruptors from aqueous media: a critical report[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105748. DOI: 10.1016/j.jece.2021.105748.
[4] LU Z Y, MA Y L, ZHANG J T, et al. A critical review of antibiotic removal strategies: performance and mechanisms[J]. Journal of Water Process Engineering, 2020, 38: 101681. DOI: 10.1016/j.jwpe.2020.101681.
[5] LEUSCH F D L, NEALE P A, BUSETTI F, et al. Transformation of endocrine disrupting chemicals, pharmaceutical and personal care products during drinking water disinfection[J]. Science of the Total Environment, 2019, 657: 1480-1490. DOI: 10.1016/j.scitotenv.2018.12.106.
[6] ISMAIL G A, SAKAI H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal[J]. Chemosphere, 2022, 291: 132906. DOI: 10.1016/j.chemosphere.2021.132906.
[7] SARAVANAN A, DEIVAYANAI V C, KUMAR P S, et al. A detailed review on advanced oxidation process in treatment of wastewater: mechanism, challenges and future outlook[J]. Chemosphere, 2022, 308(3): 136524. DOI: 10.1016/j.chemosphere.2022.136524.
[8] 杨文, 苏迎杰, 侯东睿, 等. CuO/MIL(Cr, Cu)复合材料的制备及其类芬顿催化降解苯酚性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 210-220. DOI: 10.16088/j.issn.1001-6600.2022050903.
[9] BELLO M M, RAMAN A A A. Synergy of adsorption and advanced oxidation processes in recalcitrant wastewater treatment[J]. Environmental Chemistry Letters, 2019, 17(2): 1125-1142. DOI: 10.1007/s10311-018-00842-0.
[10] DOMINGUES E, SILVA M J, VAZ T, et al. Sulfate radical based advanced oxidation processes for agro-industrial effluents treatment: a comparative review with Fenton’s peroxidation[J]. Science of the Total Environment, 2022, 832: 155029. DOI: 10.1016/j.scitotenv.2022.155029.
[11] GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes (SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406: 127083. DOI: 10.1016/j.cej.2020.127083.
[12] 刘祺, 陈蕾. 基于硫酸根自由基的高级氧化技术在污水处理中的应用[J]. 应用化工, 2022, 51(5): 1383-1388. DOI: 10.16581/j.cnki.issn1671-3206.2022.05.006.
[13] 袁蓁, 隋铭皓, 袁博杰, 等. 基于硫酸根自由基的活化过硫酸盐新型高级氧化技术研究新进展[J]. 四川环境, 2016, 35(5): 142-146. DOI: 10.14034/j.cnki.schj.2016.05.029.
[14] LYU H H, ZHANG Q R, SHEN B X. Application of biochar and its composites in catalysis[J]. Chemosphere, 2020, 240: 124842. DOI: 10.1016/j.chemosphere.2019.124842.
[15] HUSSAIN I, LI M Y, ZHANG Y Q, et al. Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol[J]. Chemical Engineering Journal, 2017, 311: 163-172. DOI: 10.1016/j.cej.2016.11.085.
[16] LIANG G W, YANG Z, WANG Z W, et al. Relying on the non-radical pathways for selective degradation organic pollutants in Fe and Cu co-doped biochar/peroxymonosulfate system: the roles of Cu, Fe, defect sites and ketonic group[J]. Separation and Purification Technology, 2021, 279: 119697. DOI: 10.1016/j.seppur.2021.119697.
[17] ZHANG Y Z, LIANG S X, HE R, et al. Enhanced adsorption and degradation of antibiotics by doping corncob biochar/PMS with heteroatoms at different preparation temperatures: mechanism, pathway, and relative contribution of reactive oxygen spec[J]. Journal of Water Process Engineering, 2022, 46: 102626. DOI: 10.1016/j.jwpe.2022.102626.
[18] YU J F, TANG L, PANG Y, et al. Non-radical oxidation by N, S, P co-doped biochar for persulfate activation: different roles of exogenous P/S doping, and electron transfer path[J]. Journal of Cleaner Production, 2022, 374: 133995. DOI: 10.1016/j.jclepro.2022.133995.
[19] 魏思洁, 王寿兵. 生物炭制备技术及生物炭在生态环境领域的应用新进展[J]. 复旦学报(自然科学版), 2022, 61(3): 365-374. DOI: 10.15943/j.cnki.fdxb-jns.2022.03.011.
[20] 吴飞, 任伟, 程成, 等. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010. DOI: 10.7536/PC210109.
[21] 刘青松, 白国敏. 生物炭及其改性技术修复土壤重金属污染研究进展[J]. 应用化工, 2022, 51(11): 3285-3291, 3299. DOI: 10.16581/j.cnki.issn1671-3206.20221101.009.
[22] 桑瑞, 孟宪荣, 许伟, 等. 污泥基生物炭活化过硫酸钠降解水中萘的研究[J]. 现代化工, 2022, 42(7): 182-187. DOI: 10.16606/j.cnki.issn0253-4320.2022.07.035.
[23] LIU Y Y, SUN Y Q, WAN Z H, et al. Tailored design of food waste hydrochar for efficient adsorption and catalytic degradation of refractory organic contaminant[J]. Journal of Cleaner Production, 2021, 310: 127482. DOI: 10.1016/j.jclepro.2021.127482.
[24] ZHANG Y N, FAN S C, LIU T, et al. A review of biochar prepared by microwave-assisted pyrolysis of organic wastes[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101873. DOI: 10.1016/j.seta.2021.101873.
[25] 韩成浩, 苑玥珂, 芦天亮, 等. 微波离子热合成研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 37-49. DOI: 10.16088/j.issn.1001-6600.2021080602.
[26] 任少云, 程红丹, 张伟平, 等. 生物炭制备方法的研究进展[J]. 高师理科学刊, 2017, 37(8): 74-76. DOI: 10.3969/j.issn.1007-9831.2017.08.017.
[27] 付兵, 杨兵, 朱鹏飞, 等. 烟梗热解气化制取生物炭方法探索[J]. 再生资源与循环经济, 2016, 9(10): 41-44. DOI: 10.3969/j.issn.1674-0912.2016.10.015.
[28] PAN X Q, GU Z P, CHEN W M, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: a review[J]. Science of the Total Environment, 2021, 754: 142104. DOI: 10.1016/j.scitotenv.2020.142104.
[29] 陈思思, 唐兴颖, 任鹏炜, 等. 催化剂在生物质水热碳化过程中应用的研究进展[J]. 环境工程, 2023, 41(4): 195-204. DOI: 10.13205/j.hjgc.202304027.
[30] YE S J, ZENG G M, TAN X F, et al. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer[J]. Applied Catalysis B:Environmental, 2020. 269: 118850. DOI: 10.1016/j.apcatb.2020.118850.
[31] LIU Z F, HE M, TANG L, et al. Dual redox cycles of Mn(Ⅱ)/Mn(Ⅲ) and Mn(Ⅲ)/Mn(Ⅳ) on porous Mn/N co-doped biochar surfaces for promoting peroxymonosulfate activation and ciprofloxacin degradation[J]. Journal of Colloid and Interface Science, 2022, 634: 255-267. DOI: 10.1016/j.jcis.2022.12.008.
[32] ZHU H Y, ZHANG Z, ZHOU Y Y, et al. Co, N co-doped carbon derived from tea residue as efficient cathode catalyst in microbial fuel cells for swine wastewater treatment and the microbial community analysis[J]. Journal of Water Process Engineering, 2022, 45: 102471. DOI: 10.1016/j.jwpe.2021.102471.
[33] ZHANG H L, YAN Z C, WAN J Q, et al. Synthesis of Fe-Nx site-based iron-nitrogen co-doped biochar catalysts for efficient removal of sulfamethoxazole from water by activation of persulfate: electron transfer mechanism of non-free radical degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654: 130174. DOI: 10.1016/j.colsurfa.2022.130174.
[34] 肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306. DOI: 10.16085/j.issn.1000-6613.2019-1833.
[35] HUANG K C, YANG S Q, LIU X H, et al. Adsorption of antibiotics from wastewater by cabbage-based N, P co-doped mesoporous carbon materials[J]. Journal of Cleaner Production, 2023, 391: 136174. DOI: 10.1016/j.jclepro.2023.136174.
[36] ZHANG H D, LI L J, LI Y J, et al. N and S co-doped pine needle biochar activated peroxydisulfate for antibiotic degradation[J]. Journal of Cleaner Production, 2022, 379: 134619. DOI: 10.1016/j.jclepro.2022.134619.
[37] XU Y, LIU S, WANG M, et al. Thiourea-assisted one-step fabrication of a novel nitrogen and sulfur co-doped biochar from nanocellulose as metal-free catalyst for efficient activation of peroxymonosulfate[J]. Journal of Hazardous Materials, 2021, 416: 125796. DOI: 10.1016/j.jhazmat.2021.125796.
[38] 罗晗倬. 氮、钴共掺杂秸秆衍生生物炭活化过硫酸盐降解环丙沙星的研究[D]. 长沙: 湖南大学, 2021. DOI: 10.27135/d.cnki.ghudu.2021.002044.
[39] XI M F, CUI K P, CUI M S, et al. Enhanced norfloxacin degradation by iron and nitrogen co-doped biochar: revealing the radical and nonradical co-dominant mechanism of persulfate activation[J]. Chemical Engineering Journal, 2021, 420: 129902. DOI: 10.1016/j.cej.2021.129902.
[40] 慎雅倩. 铁氮共掺杂碳纳米材料活化过一硫酸盐降解有机污染物的性能及机理研究[D]. 成都: 电子科技大学, 2021. DOI: 10.27005/d.cnki.gdzku.2021.002587.
[41] WANG Y J, WANG L, MA F, et al. FeOx@graphitic carbon core-shell embedded in microporous N-doped biochar activated peroxydisulfate for removal of Bisphenol A: multiple active sites induced non-radical/radical mechanism[J]. Chemical Engineering Journal, 2022, 438: 135552. DOI: 10.1016/j.cej.2022.135552.
[42] SUN P, LIU H, FENG M B, et al. Dual nonradical degradation of acetaminophen by peroxymonosulfate activation with highly reusable and efficient N/S co-doped ordered mesoporous carbon[J]. Separation and Purification Technology, 2021, 268: 118697. DOI: 10.1016/j.seppur.2021.118697.
[43] WANG S Z, WANG J L. Peroxymonosulfate activation by Co9S8@S and N co-doped biochar for sulfamethoxazole degradation[J]. Chemical Engineering Journal, 2020, 385: 123933. DOI: 10.1016/j.cej.2019.123933.
[44] 侯子良. 普鲁士蓝掺杂改性生物炭活化PDS降解CTH/BPA[D]. 兰州: 兰州大学, 2022. DOI: 10.27204/d.cnki. glzhu.2022.000836.
[45] 黄仕元, 林森焕, 董雯, 等. 锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙[J]. 复合材料学报, 2023, 40(2): 1071-1084. DOI: 10.13801/j.cnki.fhclxb.20220328.001.
[46] ZHU H, GUO A, WANG S M, et al. Efficient tetracycline degradation via peroxymonosulfate activation by magnetic Co/N co-doped biochar: emphasizing the important role of biochar graphitization[J]. Chemical Engineering Journal, 2022, 450: 138428. DOI: 10.1016/j.cej.2022.138428.
[47] HO S H, CHEN Y D, LI R X, et al. N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation[J]. Water Research, 2019, 159: 77-86. DOI: 10.1016/j.watres.2019.05.008.
[48] ZHANG K J, MIN X Y, ZHANG T Z, et al. Selenium and nitrogen co-doped biochar as a new metal-free catalyst for adsorption of phenol and activation of peroxymonosulfate: elucidating the enhanced catalytic performance and stability[J]. Journal of Hazardous Materials, 2021, 413: 125294. DOI: 10.1016/j.jhazmat.2021.125294.
[49] XIE J, XU P F, LIU M H, et al. Anchoring phosphorus on in-situ nitrogen-doped biochar by mechanical milling for promoted electron transfer from diclofenac sodium to peroxymonosulfate[J]. Separation and Purification Technology, 2022, 301: 121964. DOI: 10.1016/j.seppur.2022.121964.
[50] DOU J B, CHENG J, LU Z J, et al. Biochar co-doped with nitrogen and boron switching the free radical based peroxydisulfate activation into the electron-transfer dominated nonradical process[J]. Applied Catalysis B: Environmental, 2022, 301: 120832. DOI: 10.1016/j.apcatb.2021.120832.
[51] OH W D, ZAENI J R J, LISAK G, et al. Accelerated organics degradation by peroxymonosulfate activated with biochar co-doped with nitrogen and sulfur[J]. Chemosphere, 2021, 277: 130313. DOI: 10.1016/j.chemosphere.2021.130313.
[52] CHOONG Z Y, GASIM M F, LIN K Y A, et al. Unravelling the formation mechanism and performance of nitrogen, sulfur codoped biochar as peroxymonosulfate activator for gatifloxacin removal[J]. Chemical Engineering Journal, 2023, 451: 138958. DOI: 10.1016/j.cej.2022.138958.
[1] 张孟洋, 侯东睿, 罗静, 孙庆功, 杨豪, 王剑峰. 复合催化剂S-CuCo2O4的制备及其活化PMS降解CIP性能研究[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 156-167.
[2] 丁苏雅, 马姜明, 覃云斌, 黄芳玲, 宋丽丽, 刘文清, 李梦霞, 何昕诺. 生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 180-190.
[3] 王琳清, 鄢韬, 陈永坚, 李富荣, 王旭, 李文英, 杜瑞英, 杨秀丽. 不同水分条件下施用调理剂对土壤铅镉的钝化效应[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 231-242.
[4] 邓华, 张俊渝, 黄瑞, 王威, 胡乐宁. 竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 131-142.
[5] 熊小莉, 陈成, 罗学刚. 高温索氏提取土壤中的可降解聚乙烯蜡残余物及根窖降解评价[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 101-107.
[6] 张宗伟, 李酽, 初飞雪. 稀土、Fe3+掺杂TiO2光催化降解水中氨氮研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 117-121.
[7] 唐晓琳, 王越川, 何星存, 黄智, 陈孟林. 机械化学方法降解活性翠兰KN-G[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 52-56.
[8] 李跃军, 曹铁平, 王长华. BiOCl纳米纤维制备及光催化性能研究[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 72-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗云演, 李容正, 李冰, 丁晨旭. 响应面优化多刺绿绒蒿总生物碱提取工艺[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 84 -90 .
[2] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[3] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[4] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[5] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[6] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[7] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[8] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[9] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[10] 程蕾, 闫普选, 杜博豪, 叶思, 邹华红. MOF-2的水相合成及其热稳定和介电性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 86 -95 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发