广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 156-167.doi: 10.16088/j.issn.1001-6600.2023050807

• 研究论文 • 上一篇    下一篇

复合催化剂S-CuCo2O4的制备及其活化PMS降解CIP性能研究

张孟洋1, 侯东睿1, 罗静2, 孙庆功2, 杨豪1, 王剑峰1*   

  1. 1.郑州大学 生态与环境学院, 河南 郑州 450001;
    2.郑州大学 化工学院, 河南 郑州 450001
  • 收稿日期:2023-05-08 修回日期:2023-05-18 出版日期:2024-01-25 发布日期:2024-01-19
  • 通讯作者: 王剑峰(1972—),女,河南淇县人,郑州大学副教授,博士。E-mail:1514903022@qq.com
  • 基金资助:
    国家自然科学基金(22178326)

Preparation of S-CuCo2O4 Composite Catalysts and Study on Its Performance of Activating Peroxymonosulfate to Degrade Ciprofloxacin

ZHANG Mengyang1, HOU Dongrui1, LUO Jing2, SUN Qinggong2, YANG Hao1, WANG Jianfeng1*   

  1. 1. School of Ecology and Environment, Zhengzhou University, Zhengzhou Henan 450001, China;
    2. School of Chemical Engineering, Zhengzhou University, Zhengzhou Henan 450001, China
  • Received:2023-05-08 Revised:2023-05-18 Online:2024-01-25 Published:2024-01-19

摘要: 采用水热法,以硫脲为硫源对CuCo2O4进行硫化处理合成S-CuCo2O4,对复合催化剂S-CuCo2O4进行XRD、FT-IR、SEM、XPS、ICP-OES、EPR表征,并考察其活化过一硫酸盐(PMS)降解环丙沙星(ciprofloxacin,CIP)的效果。实验结果表明:成功制备出S-CuCo2O4催化剂,在其表面富含Co(Ⅱ)和Cu(Ⅰ);当催化剂投加量为0.06 g/L、PMS投加量为0.2 g/L、pH=6.4时,复合催化剂S-CuCo2O4在25 min后对CIP的降解效率可达96.8%,降解效果明显优于CuCo2O4、CuCo2S4。自由基淬灭实验和EPR测试表明,SO-4·和1O2是反应体系的主要活性氧物种,其可能的催化机理是:Cu(Ⅰ)和Co(Ⅱ)能直接与PMS反应生成自由基,同时Cu(Ⅰ)能还原Co(Ⅲ)生成Co(Ⅱ),促进Co(Ⅱ)/Co(Ⅲ)循环,催化剂表面存在的氧空位也可与PMS反应生成1O2,在活性氧物种的共同作用下CIP被高效降解。复合催化剂S-CuCo2O4在4次循环使用后对CIP的降解效率仍可达93.5%,证明其循环稳定性较好;对其他污染物也有较好的降解效率,具有较好的通用性,在废水处理中具有良好的应用前景。

关键词: 环丙沙星, 过一硫酸盐, 活化, 降解, 非均相催化剂, CuCo2O4, 硫化

Abstract: S-CuCo2O4 was prepared by using thiourea as sulfur source to vulcanize CuCo2O4 via a simple hydrothermal method. The composite catalyst S-CuCo2O4 was characterized by XRD, FT-IR, SEM, XPS, ICP-OES and EPR, and the degradation effect of ciprofloxacin by activating PMS was investigated. The experimental results showed that S-CuCo2O4 catalyst has been prepared successfully, and its surface is rich in Co(Ⅱ) and Cu(Ⅰ); when the dosage of catalyst was 0.06 g/L, the dosage of PMS was 0.2 g/L and pH was 6.4, the S-CuCo2O4 showed superior behavior for degradation of ciprofloxacin with the efficiency as high as 96.8% in 25 min, better than that of CuCo2O4 and CuCo2S4. Finally, it was proved that SO-4· and 1O2 were the main reactive oxygen species in the reaction system by free radical quenching experiment and EPR test. The possible catalytic mechanism is as follows: Cu(Ⅰ) and Co(Ⅱ) can react directly with persulfate (PMS) to form free radicals, and Cu(Ⅰ) can reduce Co(Ⅲ) to form Co(Ⅱ), promoting the Co(Ⅱ)/Co(Ⅲ) cycle,the oxygen vacancies on the catalyst surface can also react with PMS to form 1O2, and ciprofloxacin can be efficiently degraded under the joint action of reactive oxygen species. The degradation efficiency of the compound catalyst S-CuCo2O4 for ciprofloxacin was still up to 93.5% after four cycles, which proved that the cyclic stability was good. It also has good degradation efficiency for other pollutants, and excellent generality, suggesting its potential in wastewater treatment.

Key words: ciprofloxacin, peroxymonosulfate, activation, degradition, heterogeneous catalyst, CuCo2O4, sulfuration

中图分类号:  X703;TQ426

[1] BEN MORDECHAY E, MORDEHAY V, TARCHITZKY J, et al. Fate of contaminants of emerging concern in the reclaimed wastewater-soil-plant continuum[J]. Science of the Total Environment, 2022, 822: 153574.DOI: 10.1016/j.scitotenv.2022.153574.
[2] ZHU S J, LI H J, WANG L, et al. Oxygen vacancies-rich α@δ-MnO2 mediated activation of peroxymonosulfate for the degradation of CIP: the role of electron transfer process on the surface[J]. Chemical Engineering Journal, 2023, 458: 141415.DOI: 10.1016/j.cej.2023.141415.
[3] YU M, TEEL A L, WATTS R J. Activation of peroxymonosulfate by subsurface minerals[J]. Journal of Contaminant Hydrology, 2016, 191: 33-43.DOI: 10.1016/j.jconhyd.2016.05.001.
[4] CHESNEY A R, BOOTH C J, LIETZ C B, et al. Peroxymonosulfate rapidly inactivates the disease-associated prion protein[J]. Environmental Science & Technology, 2016, 50(13): 7095-7105.DOI: 10.1021/acs.est.5b06294.
[5] WANG C, DU J Y, LIANG Z J, et al. High-efficiency oxidation of fluoroquinolones by the synergistic activation of peroxymonosulfate via vacuum ultraviolet and ferrous iron[J]. Journal of Hazardous Materials, 2022, 422: 126884.DOI: 10.1016/j.jhazmat.2021.126884.
[6] KERMANI M, FARZADKIA M, MOROVATI M, et al. Degradation of furfural in aqueous solution using activated persulfate and peroxymonosulfate by ultrasound irradiation[J]. Journal of Environmental Management, 2020, 266: 110616.DOI: 10.1016/j.jenvman.2020.110616.
[7] ZHAO Y, WU D, CHEN Y, et al. Thermal removal of partial nitrogen atoms in N-doped graphene for enhanced catalytic oxidation[J]. Journal of Colloid and Interface Science, 2021, 585: 640-648. DOI: 10.1016/j.jcis.2020.10.043.
[8] FENG Y, LIU J H, WU D L, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280: 514-524. DOI: 10.1016/j.cej.2015.05.121.
[9] ZHANG L Y, DENG J W, OU J L, et al. Boric acid enhanced degradation of organic pollutant by Cu(Ⅱ)/peroxy-monosulfate: performance and mechanism[J]. Separation and Purification Technology, 2022, 293: 121135.DOI: 10.1016/j.seppur.2022.121135.
[10] SHI X, HONG P D, HUANG H Q, et al. Enhanced peroxymonosulfate activation by hierarchical porous Fe3O4/Co3S4 nanosheets for efficient elimination of rhodamine B: mechanisms, degradation pathways and toxicological analysis[J]. Journal of Colloid and Interface Science, 2022, 610: 751-765. DOI: 10.1016/j.jcis.2021.11.118.
[11] HU G W, HUANG Z P, HU C X, et al. Selective photocatalytic hydrogenation of α,β-unsaturated aldehydes on Au/CuCo2O4 nanotubes under visible-light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8288-8294. DOI: 10.1021/acssuschemeng.0c01852.
[12] NAVEENKUMAR P, PARUTHIMAL KALAIGNAN G. Fabrication of core-shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications[J]. Composites Part B: Engineering, 2019, 173: 106864. DOI: 10.1016/j.compositesb.2019.05.075.
[13] HWANG S G, RYU S H, YUN S R, et al. Behavior of NiO-MnO2/MWCNT composites for use in a supercapacitor[J]. Materials Chemistry and Physics, 2011, 130(1/2): 507-512. DOI: 10.1016/j.matchemphys.2011.07.022.
[14] VERMA S, JOSHI H M, JAGADALE T, et al. Nearly monodispersed multifunctional NiCo2O4 spinel nanoparticles: magnetism, infrared transparency, and radiofrequency absorption[J]. The Journal of Physical Chemistry C, 2008, 112(39): 15106-15112. DOI: 10.1021/jp804923t.
[15] SHANMUGAVANI A, SELVAN R K. Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors[J]. Electrochimica Acta, 2016, 188: 852-862. DOI: 10.1016/j.electacta.2015.12.077.
[16] MEYER E L, MBESE J Z, AGORO M A, et al. Optical and structural-chemistry of SnS nanocrystals prepared by thermal decomposition of bis(N-di-isopropyl-N-octyl dithiocarbamato)tin(Ⅱ) complex for promising materials in solar cell applications[J]. Optical and Quantum Electronics, 2020, 52(2): 90. DOI: 10.1007/s11082-020-2212-2.
[17] XU C J, TAN J K, ZHANG X D, et al. Petal-like CuCo2O4 spinel nanocatalyst with rich oxygen vacancies for efficient PMS activation to rapidly degrade pefloxacin[J]. Separation and Purification Technology, 2022, 291: 120933. DOI: 10.1016/j.seppur.2022.120933.
[18] ROY K, GOPINATH C S. UV photoelectron spectroscopy at near ambient pressures: mapping valence band electronic structure changes from Cu to CuO[J]. Analytical Chemistry, 2014, 86(8): 3683-3687. DOI: 10.1021/ac4041026.
[19] XU P, LI X, WEI R, et al. High adaptability and stability FeCo2O4/diatomite composite for efficient peroxymonosulfate activation: performance, water matrix impact, and mechanism[J]. Chemical Engineering Journal, 2023, 462: 142204. DOI: 10.1016/j.cej.2023.142204.
[20] ZHU H, ZHANG J F, YANZHANG R P, et al. When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting[J]. Advanced Materials, 2015, 27(32): 4752-4759. DOI: 10.1002/adma.201501969.
[21] DONG X B, DUAN X D, SUN Z M, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2020, 261: 118214. DOI: 10.1016/j.apcatb.2019.118214.
[22] ZHAO Y, AN H Z, DONG G J, et al. Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism[J]. Chemical Engineering Journal, 2020, 388: 124371. DOI: 10.1016/j.cej.2020.124371.
[23] HU W, CHEN R Q, XIE W, et al. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications[J]. ACS Applied Materials & Interfaces, 2014, 6(21): 19318-19326. DOI: 10.1021/am5053784.
[24] LI W, LI Y X, ZHANG D Y, et al. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 381: 121209. DOI: 10.1016/j.jhazmat.2019.121209.
[25] LUO J M, BO S F, QIN Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 395: 125036. DOI: 10.1016/j.cej.2020.125063.
[26] FAN Y H, LI Y Q, HAYAT F, et al. Multi-targeted removal of coexisted antibiotics in water by the synergies of radical and non-radical pathways in PMS activation[J]. Separation and Purification Technology, 2023, 305: 122475. DOI: 10.1016/j.seppur.2022.122475.
[27] LAI L D, YAN J F, LI J, et al. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: performance, biotoxicity, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 343: 676-688. DOI: 10.1016/j.cej.2018.01.035.
[28] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes(AOPs)[J]. Environmental Science and Technology, 2014, 48(4): 2344-2351. DOI: 10.1021/es404118q.
[29] GHAUCH A, BAALBAKI A, AMASHA M, et al. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water[J]. Chemical Engineering Journal, 2017, 317: 1012-1025. DOI: 10.1016/j.cej.2017.02.133.
[30] ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science and Technology, 2003, 37(20): 4790-4797. DOI: 10.1021/es0263792.
[31] NIE M H, YANG Y, ZHANG Z J, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. DOI: 10.1016/j.cej.2014.02.047.
[32] YIN C K, ZHOU S J, ZHANG K Y, et al. Crednerite CuMnO2 as highly efficient Fenton-like catalysts for p-nitrophenol removal:synergism between Cu(Ⅰ) and Mn(Ⅲ)[J]. Journal of Cleaner Production, 2021, 319: 128640. DOI: 10.1016/j.jclepro.2021.128640.
[33] TIAN Y H, YAO S J, ZHOU L, et al. Efficient removal of antibiotic-resistant bacteria and intracellular antibiotic resistance genes by heterogeneous activation of peroxymonosulfate on hierarchical macro-mesoporous Co3O4-SiO2 with enhanced photogenerated charges[J]. Journal of Hazardous Materials, 2022, 430: 127414. DOI: 10.1016/j.jhazmat.2021.127414.
[34] SUN J Q, LIU L F, YANG F L. A visible-light-driven photocatalytic fuel cell/peroxymonosulfate (PFC/PMS) system using blue TiO2 nanotube arrays (TNA) anode and Cu-Co-WO3 cathode for enhanced oxidation of organic pollutant and ammonium nitrogen in real seawater[J]. Applied Catalysis B: Environmental, 2022, 308: 121215. DOI: 10.1016/j.apcatb.2022.121215.
[1] 尹理亚, 丁开, 杜文泽, 芦天亮, 王剑峰, 韩丽. 金属/非金属和氮共掺杂生物炭的制备及其在有机污水处理中的应用进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 9-17.
[2] 刘立娥, 方志刚, 宋静丽, 原琳, 魏代霞. 二维CrPS4异构化反应的热力学与动力学研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 122-131.
[3] 杨文静, 邓钰莲, 陈铸鑫, 陶阿凤, 韦力心, 吴金燕, 田翼豪, 宿程远. 环丙沙星对厌氧反应器处理含磷废水效能及微生物群落响应的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 158-168.
[4] 杨文, 苏迎杰, 侯东睿, 罗静, 孙庆功, 张孟洋, 杨豪, 王剑峰. CuO/MIL(Cr, Cu)复合材料的制备及其类芬顿催化降解苯酚性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 210-220.
[5] 刘俊琛, 黄浩然, 葛春玉, 王红强, 方岳平. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456.
[6] 熊小莉, 陈成, 罗学刚. 高温索氏提取土壤中的可降解聚乙烯蜡残余物及根窖降解评价[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 101-107.
[7] 张宗伟, 李酽, 初飞雪. 稀土、Fe3+掺杂TiO2光催化降解水中氨氮研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 117-121.
[8] 唐晓琳, 王越川, 何星存, 黄智, 陈孟林. 机械化学方法降解活性翠兰KN-G[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 52-56.
[9] 李跃军, 曹铁平, 王长华. BiOCl纳米纤维制备及光催化性能研究[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 72-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 罗云演, 李容正, 李冰, 丁晨旭. 响应面优化多刺绿绒蒿总生物碱提取工艺[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 84 -90 .
[2] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[3] 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14 -25 .
[4] 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26 -36 .
[5] 梁正友, 蔡俊民, 孙宇, 陈磊. 结合残差动态图卷积与特征强化的点云分类[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 37 -48 .
[6] 欧阳舒歆, 王洺钧, 荣垂田, 孙华波. 基于改进LSTM的多维QAR数据异常检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 49 -60 .
[7] 李依洋, 曾才斌, 黄在堂. 分数Brown运动驱动的具有壁附着的恒化器模型的随机吸引子[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 61 -68 .
[8] 李鹏博, 李永祥. 外部区域上p-Laplace方程的径向对称解[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 69 -75 .
[9] 吴子弦, 成军, 符坚铃, 周心雯, 谢佳龙, 宁全. 基于PI的Semi-Markovian电力系统事件触发控制设计分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 76 -85 .
[10] 程蕾, 闫普选, 杜博豪, 叶思, 邹华红. MOF-2的水相合成及其热稳定和介电性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 86 -95 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发