|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (1): 156-167.doi: 10.16088/j.issn.1001-6600.2023050807
张孟洋1, 侯东睿1, 罗静2, 孙庆功2, 杨豪1, 王剑峰1*
ZHANG Mengyang1, HOU Dongrui1, LUO Jing2, SUN Qinggong2, YANG Hao1, WANG Jianfeng1*
摘要: 采用水热法,以硫脲为硫源对CuCo2O4进行硫化处理合成S-CuCo2O4,对复合催化剂S-CuCo2O4进行XRD、FT-IR、SEM、XPS、ICP-OES、EPR表征,并考察其活化过一硫酸盐(PMS)降解环丙沙星(ciprofloxacin,CIP)的效果。实验结果表明:成功制备出S-CuCo2O4催化剂,在其表面富含Co(Ⅱ)和Cu(Ⅰ);当催化剂投加量为0.06 g/L、PMS投加量为0.2 g/L、pH=6.4时,复合催化剂S-CuCo2O4在25 min后对CIP的降解效率可达96.8%,降解效果明显优于CuCo2O4、CuCo2S4。自由基淬灭实验和EPR测试表明,SO-4·和1O2是反应体系的主要活性氧物种,其可能的催化机理是:Cu(Ⅰ)和Co(Ⅱ)能直接与PMS反应生成自由基,同时Cu(Ⅰ)能还原Co(Ⅲ)生成Co(Ⅱ),促进Co(Ⅱ)/Co(Ⅲ)循环,催化剂表面存在的氧空位也可与PMS反应生成1O2,在活性氧物种的共同作用下CIP被高效降解。复合催化剂S-CuCo2O4在4次循环使用后对CIP的降解效率仍可达93.5%,证明其循环稳定性较好;对其他污染物也有较好的降解效率,具有较好的通用性,在废水处理中具有良好的应用前景。
中图分类号: X703;TQ426
[1] BEN MORDECHAY E, MORDEHAY V, TARCHITZKY J, et al. Fate of contaminants of emerging concern in the reclaimed wastewater-soil-plant continuum[J]. Science of the Total Environment, 2022, 822: 153574.DOI: 10.1016/j.scitotenv.2022.153574. [2] ZHU S J, LI H J, WANG L, et al. Oxygen vacancies-rich α@δ-MnO2 mediated activation of peroxymonosulfate for the degradation of CIP: the role of electron transfer process on the surface[J]. Chemical Engineering Journal, 2023, 458: 141415.DOI: 10.1016/j.cej.2023.141415. [3] YU M, TEEL A L, WATTS R J. Activation of peroxymonosulfate by subsurface minerals[J]. Journal of Contaminant Hydrology, 2016, 191: 33-43.DOI: 10.1016/j.jconhyd.2016.05.001. [4] CHESNEY A R, BOOTH C J, LIETZ C B, et al. Peroxymonosulfate rapidly inactivates the disease-associated prion protein[J]. Environmental Science & Technology, 2016, 50(13): 7095-7105.DOI: 10.1021/acs.est.5b06294. [5] WANG C, DU J Y, LIANG Z J, et al. High-efficiency oxidation of fluoroquinolones by the synergistic activation of peroxymonosulfate via vacuum ultraviolet and ferrous iron[J]. Journal of Hazardous Materials, 2022, 422: 126884.DOI: 10.1016/j.jhazmat.2021.126884. [6] KERMANI M, FARZADKIA M, MOROVATI M, et al. Degradation of furfural in aqueous solution using activated persulfate and peroxymonosulfate by ultrasound irradiation[J]. Journal of Environmental Management, 2020, 266: 110616.DOI: 10.1016/j.jenvman.2020.110616. [7] ZHAO Y, WU D, CHEN Y, et al. Thermal removal of partial nitrogen atoms in N-doped graphene for enhanced catalytic oxidation[J]. Journal of Colloid and Interface Science, 2021, 585: 640-648. DOI: 10.1016/j.jcis.2020.10.043. [8] FENG Y, LIU J H, WU D L, et al. Efficient degradation of sulfamethazine with CuCo2O4 spinel nanocatalysts for peroxymonosulfate activation[J]. Chemical Engineering Journal, 2015, 280: 514-524. DOI: 10.1016/j.cej.2015.05.121. [9] ZHANG L Y, DENG J W, OU J L, et al. Boric acid enhanced degradation of organic pollutant by Cu(Ⅱ)/peroxy-monosulfate: performance and mechanism[J]. Separation and Purification Technology, 2022, 293: 121135.DOI: 10.1016/j.seppur.2022.121135. [10] SHI X, HONG P D, HUANG H Q, et al. Enhanced peroxymonosulfate activation by hierarchical porous Fe3O4/Co3S4 nanosheets for efficient elimination of rhodamine B: mechanisms, degradation pathways and toxicological analysis[J]. Journal of Colloid and Interface Science, 2022, 610: 751-765. DOI: 10.1016/j.jcis.2021.11.118. [11] HU G W, HUANG Z P, HU C X, et al. Selective photocatalytic hydrogenation of α,β-unsaturated aldehydes on Au/CuCo2O4 nanotubes under visible-light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8288-8294. DOI: 10.1021/acssuschemeng.0c01852. [12] NAVEENKUMAR P, PARUTHIMAL KALAIGNAN G. Fabrication of core-shell like hybrids of CuCo2S4@NiCo(OH)2 nanosheets for supercapacitor applications[J]. Composites Part B: Engineering, 2019, 173: 106864. DOI: 10.1016/j.compositesb.2019.05.075. [13] HWANG S G, RYU S H, YUN S R, et al. Behavior of NiO-MnO2/MWCNT composites for use in a supercapacitor[J]. Materials Chemistry and Physics, 2011, 130(1/2): 507-512. DOI: 10.1016/j.matchemphys.2011.07.022. [14] VERMA S, JOSHI H M, JAGADALE T, et al. Nearly monodispersed multifunctional NiCo2O4 spinel nanoparticles: magnetism, infrared transparency, and radiofrequency absorption[J]. The Journal of Physical Chemistry C, 2008, 112(39): 15106-15112. DOI: 10.1021/jp804923t. [15] SHANMUGAVANI A, SELVAN R K. Improved electrochemical performances of CuCo2O4/CuO nanocomposites for asymmetric supercapacitors[J]. Electrochimica Acta, 2016, 188: 852-862. DOI: 10.1016/j.electacta.2015.12.077. [16] MEYER E L, MBESE J Z, AGORO M A, et al. Optical and structural-chemistry of SnS nanocrystals prepared by thermal decomposition of bis(N-di-isopropyl-N-octyl dithiocarbamato)tin(Ⅱ) complex for promising materials in solar cell applications[J]. Optical and Quantum Electronics, 2020, 52(2): 90. DOI: 10.1007/s11082-020-2212-2. [17] XU C J, TAN J K, ZHANG X D, et al. Petal-like CuCo2O4 spinel nanocatalyst with rich oxygen vacancies for efficient PMS activation to rapidly degrade pefloxacin[J]. Separation and Purification Technology, 2022, 291: 120933. DOI: 10.1016/j.seppur.2022.120933. [18] ROY K, GOPINATH C S. UV photoelectron spectroscopy at near ambient pressures: mapping valence band electronic structure changes from Cu to CuO[J]. Analytical Chemistry, 2014, 86(8): 3683-3687. DOI: 10.1021/ac4041026. [19] XU P, LI X, WEI R, et al. High adaptability and stability FeCo2O4/diatomite composite for efficient peroxymonosulfate activation: performance, water matrix impact, and mechanism[J]. Chemical Engineering Journal, 2023, 462: 142204. DOI: 10.1016/j.cej.2023.142204. [20] ZHU H, ZHANG J F, YANZHANG R P, et al. When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting[J]. Advanced Materials, 2015, 27(32): 4752-4759. DOI: 10.1002/adma.201501969. [21] DONG X B, DUAN X D, SUN Z M, et al. Natural illite-based ultrafine cobalt oxide with abundant oxygen-vacancies for highly efficient Fenton-like catalysis[J]. Applied Catalysis B: Environmental, 2020, 261: 118214. DOI: 10.1016/j.apcatb.2019.118214. [22] ZHAO Y, AN H Z, DONG G J, et al. Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism[J]. Chemical Engineering Journal, 2020, 388: 124371. DOI: 10.1016/j.cej.2020.124371. [23] HU W, CHEN R Q, XIE W, et al. CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications[J]. ACS Applied Materials & Interfaces, 2014, 6(21): 19318-19326. DOI: 10.1021/am5053784. [24] LI W, LI Y X, ZHANG D Y, et al. CuO-Co3O4@CeO2 as a heterogeneous catalyst for efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 381: 121209. DOI: 10.1016/j.jhazmat.2019.121209. [25] LUO J M, BO S F, QIN Y N, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 395: 125036. DOI: 10.1016/j.cej.2020.125063. [26] FAN Y H, LI Y Q, HAYAT F, et al. Multi-targeted removal of coexisted antibiotics in water by the synergies of radical and non-radical pathways in PMS activation[J]. Separation and Purification Technology, 2023, 305: 122475. DOI: 10.1016/j.seppur.2022.122475. [27] LAI L D, YAN J F, LI J, et al. Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: performance, biotoxicity, degradation pathways and mechanism[J]. Chemical Engineering Journal, 2018, 343: 676-688. DOI: 10.1016/j.cej.2018.01.035. [28] YANG Y, PIGNATELLO J J, MA J, et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes(AOPs)[J]. Environmental Science and Technology, 2014, 48(4): 2344-2351. DOI: 10.1021/es404118q. [29] GHAUCH A, BAALBAKI A, AMASHA M, et al. Contribution of persulfate in UV-254 nm activated systems for complete degradation of chloramphenicol antibiotic in water[J]. Chemical Engineering Journal, 2017, 317: 1012-1025. DOI: 10.1016/j.cej.2017.02.133. [30] ANIPSITAKIS G P, DIONYSIOU D D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt[J]. Environmental Science and Technology, 2003, 37(20): 4790-4797. DOI: 10.1021/es0263792. [31] NIE M H, YANG Y, ZHANG Z J, et al. Degradation of chloramphenicol by thermally activated persulfate in aqueous solution[J]. Chemical Engineering Journal, 2014, 246: 373-382. DOI: 10.1016/j.cej.2014.02.047. [32] YIN C K, ZHOU S J, ZHANG K Y, et al. Crednerite CuMnO2 as highly efficient Fenton-like catalysts for p-nitrophenol removal:synergism between Cu(Ⅰ) and Mn(Ⅲ)[J]. Journal of Cleaner Production, 2021, 319: 128640. DOI: 10.1016/j.jclepro.2021.128640. [33] TIAN Y H, YAO S J, ZHOU L, et al. Efficient removal of antibiotic-resistant bacteria and intracellular antibiotic resistance genes by heterogeneous activation of peroxymonosulfate on hierarchical macro-mesoporous Co3O4-SiO2 with enhanced photogenerated charges[J]. Journal of Hazardous Materials, 2022, 430: 127414. DOI: 10.1016/j.jhazmat.2021.127414. [34] SUN J Q, LIU L F, YANG F L. A visible-light-driven photocatalytic fuel cell/peroxymonosulfate (PFC/PMS) system using blue TiO2 nanotube arrays (TNA) anode and Cu-Co-WO3 cathode for enhanced oxidation of organic pollutant and ammonium nitrogen in real seawater[J]. Applied Catalysis B: Environmental, 2022, 308: 121215. DOI: 10.1016/j.apcatb.2022.121215. |
[1] | 尹理亚, 丁开, 杜文泽, 芦天亮, 王剑峰, 韩丽. 金属/非金属和氮共掺杂生物炭的制备及其在有机污水处理中的应用进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 9-17. |
[2] | 刘立娥, 方志刚, 宋静丽, 原琳, 魏代霞. 二维CrPS4异构化反应的热力学与动力学研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 122-131. |
[3] | 杨文静, 邓钰莲, 陈铸鑫, 陶阿凤, 韦力心, 吴金燕, 田翼豪, 宿程远. 环丙沙星对厌氧反应器处理含磷废水效能及微生物群落响应的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 158-168. |
[4] | 杨文, 苏迎杰, 侯东睿, 罗静, 孙庆功, 张孟洋, 杨豪, 王剑峰. CuO/MIL(Cr, Cu)复合材料的制备及其类芬顿催化降解苯酚性能研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 210-220. |
[5] | 刘俊琛, 黄浩然, 葛春玉, 王红强, 方岳平. 磷掺杂与MoS2光沉积共同促进CdS光催化产氢[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 445-456. |
[6] | 熊小莉, 陈成, 罗学刚. 高温索氏提取土壤中的可降解聚乙烯蜡残余物及根窖降解评价[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 101-107. |
[7] | 张宗伟, 李酽, 初飞雪. 稀土、Fe3+掺杂TiO2光催化降解水中氨氮研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 117-121. |
[8] | 唐晓琳, 王越川, 何星存, 黄智, 陈孟林. 机械化学方法降解活性翠兰KN-G[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 52-56. |
[9] | 李跃军, 曹铁平, 王长华. BiOCl纳米纤维制备及光催化性能研究[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 72-75. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |