|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 80-91.doi: 10.16088/j.issn.1001-6600.2023031702
宋冠武, 陈知明, 李建军*
SONG Guanwu, CHEN Zhiming, LI Jianjun*
摘要: 知识蒸馏能提高神经网络的泛化能力,可解决遥感图像场景分类时标注数据不足的问题。遥感图像存在的类间高相似性会导致中间知识特征丢失,针对该问题,本文提出一种基于自蒸馏级联注意力机制的特征提取方法(SDCASA)。首先构造权值共享的教师、学生网络;然后使用级联注意力模块精细化深层教师网络所提取到的特征,同时保留被浅层神经网络过滤的中间边缘信息;再利用精细化之后的特征指导学生网络学习;最后在下游训练一个线性分类器完成特征分类。在3个公开数据集AID、MLRSNet、EuroSAT上使用20%和50%的样本训练,分类准确率分别达到85.17%、90.10%、91.13%和85.50%、92.13%、91.17%。此方法能有效提高遥感图像场景分类准确率,性能优于主流自监督图像分类方法 SimSiam、SwAV、MoCov2、Deepcluster,具有良好的应用价值。
中图分类号: TP751
[1] 张康, 黑保琴, 李盛阳, 等. 基于CNN模型的遥感图像复杂场景分类[J]. 国土资源遥感, 2018, 30(4): 49-55. DOI: 10.6046/gtzyyg.2018.04.08. [2] 汪晓洲, 石翠萍, 杨焜, 等. 基于深度学习的场景遥感图像分类方法研究[J]. 齐齐哈尔大学学报(自然科学版), 2021, 37(5): 11-15. DOI: 10.3969/j.issn.1007-984X.2021.05.003. [3] 郭棚跃. 基于深度学习的高光谱遥感图像分类[D]. 桂林: 桂林电子科技大学, 2021. DOI: 10.27049/d.cnki.ggldc.2021.000389. [4] TAO C, LU W P, QI J, et al. Spatial information considered network for scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(6): 984-988. DOI: 10.1109/LGRS.2020.2992929. [5] 陈知明, 张江, 邱汉清, 等. 基于密集连接的高分辨率遥感图像分类[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 88-94. DOI: 10.16088/j.issn.1001-6600.2021071503. [6] 张馨月. 基于DCNN的高分辨率遥感图像场景分类[D]. 长春: 吉林大学, 2019. [7] 王振国, 陈宏宇, 徐文明. 利用DCNN融合特征对遥感图像进行场景分类[J]. 电子设计工程, 2018, 26(1): 189-193. DOI: 10.3969/j.issn.1674-6236.2018.01.042. [8] 刘金香, 班伟, 陈宇, 等. 融合多维度CNN的高光谱遥感图像分类算法[J]. 中国激光, 2021, 48(16): 1610003. DOI: 10.3788/CJL202148.1610003. [9] TAO C, QI J, LU W P, et al. Remote sensing image scene classification with self-supervised paradigm under limited labeled samples[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 8004005. DOI: 10.1109/LGRS.2020.3038420. [10] JING L L, TIAN Y L. Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(11): 4037-4058. DOI: 10.1109/TPAMI.2020.2992393. [11] MAÑAS O, LACOSTE A, GIRÓ-I-NIETO X, et al. Seasonal contrast: unsupervised pre-training from uncurated remote sensing data[C]// 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Los Alamitos, CA: IEEE Computer Society, 2021: 9394-9403. DOI: 10.1109/ICCV48922.2021.00928. [12] HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 9726-9735. DOI: 10.1109/CVPR42600.2020.00975. [13] CHEN X L, HE K M. Exploring simple Siamese representation learning[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 15745-15753. DOI: 10.1109/CVPR46437.2021.01549. [14] CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]// Advances in Neural Information Processing Systems 33(NeurIPS 2020). Red Hook, NY: Curran Associates Inc., 2020: 9912-9924. [15] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL].(2015-03-09)[2023-03-17]. http://arxiv.org/abs/1503.02531. DOI: 10.48550/arXiv.1503.02531. [16] YUE J, FANG L Y, RAHMANI H, et al. Self-supervised learning with adaptive distillation for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5501813. DOI: 10.1109/TGRS.2021.3057768. [17] ZAGORUYKO S, KOMODAKIS N. Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer[EB/OL].(2017-02-12)[2023-03-17]. http://arxiv.org/abs/1612.03928v3. DOI: 10.48550/arXiv.1612.03928. [18] 孙显, 杨竹君, 李俊希, 等. 基于知识自蒸馏的轻量化复杂遥感图像精细分类方法[J]. 指挥与控制学报, 2021, 7(4): 365-373. DOI: 10.3969/j.issn.2096-0204.2021.04.0365. [19] CHEN G Z, ZHANG X D, TAN X L, et al. Training small networks for scene classification of remote sensing images via knowledge distillation[J]. Remote Sensing, 2018, 10(5): 719. DOI: 10.3390/rs10050719. [20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018: LNCS Volume 11211. Cham: Springer Nature Switzerland AG, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1. [21] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 7794-7803. DOI: 10.1109/CVPR.2018.00813. [22] FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 3141-3149. DOI: 10.1109/CVPR.2019.00326. [23] 王元东. 基于ResNet模型的图像分类方法及应用研究[D]. 南昌: 华东交通大学, 2019. DOI: 10.27147/d.cnki.ghdju.2019.000432 [24] 冯凯, 崔弘, 吴锐. 基于3D残差网络的视频哈希检索[J]. 电子设计工程, 2021, 29(22): 128-133. DOI: 10.14022/j.issn1674-6236.2021.22.028. [25] GRILL J B, STRUB F, ALTCHÉ F, et al. Bootstrap your own latent: a new approach to self-supervised learning[C]// Advances in Neural Information Processing Systems 33(NeurIPS 2020). Red Hook, NY: Curran Associates Inc., 2020: 21271-21284. [26] XIA G S, HU J W, HU F, et al. AID: a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3965-3981. DOI: 10.1109/TGRS.2017.2685945. [27] TAN X W, XIAO Z F, ZHU J J, et al. Transformer-driven semantic relation inference for multilabel classification of high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1884-1901. DOI: 10.1109/JSTARS.2022.3145042. [28] 苗壮, 王亚鹏, 李阳, 等. 一种鲁棒的双教师自监督蒸馏哈希学习方法[J]. 计算机科学, 2022, 49(10): 159-168. DOI: 10.11896/jsjkx.210800050. [29] CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OL].(2020-03-09)[2023-03-17]. http://arxiv.org/abs/2003.04297. DOI: 10.48550/arXiv.2003.04297. [30] CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering for unsupervised learning of visual features[C]// Computer Vision-ECCV 2018: LNCS Volume 11218. Cham: Springer Nature Switzerland AG, 2018: 139-156. DOI: 10.1007/978-3-030-01264-9_9. [31] CHENG G, HAN J W, LU X Q. Remote sensing image scene classification: benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10): 1865-1883. DOI: 10.1109/JPROC.2017.2675998. [32] GUO Y Y, JI J S, LU X K, et al. Global-local attention network for aerial scene classification[J]. IEEE Access, 2019, 7: 67200-67212. DOI: 10.1109/ACCESS.2019.2918732. [33] TANG X, MA Q S, ZHANG X R, et al. Attention consistent network for remote sensing scene classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2030-2045. DOI: 10.1109/JSTARS.2021.3051569. [34] WANG D, ZHANG J, DU B, et al. An empirical study of remote sensing pretraining[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5608020. DOI: 10.1109/TGRS.2022.3176603. [35] AREFEEN M A, NIMI S T, UDDIN M Y S, et al. A lightweight ReLU-based feature fusion for aerial scene classification[C]// 2021 IEEE International Conference on Image Processing(ICIP). Piscataway, NJ: IEEE, 2021: 3857-3861. DOI: 10.1109/ICIP42928.2021.9506524. |
[1] | 郭嘉梁, 靳婷. 基于语义增强的多模态情感分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 14-25. |
[2] | 吴正清, 曹晖, 刘宝锴. 基于注意力卷积神经网络的中文虚假评论检测[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 26-36. |
[3] | 唐侯清, 辛斌斌, 朱虹谕, 乙加伟, 张冬冬, 武新章, 双丰. 基于多尺度注意力倒残差网络的轴承故障诊断[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 109-122. |
[4] | 黄叶祺, 王明伟, 闫瑞, 雷涛. 基于改进的YOLOv5金刚石线表面质量检测[J]. 广西师范大学学报(自然科学版), 2023, 41(4): 123-134. |
[5] | 邓希桢, 蒋明, 岑明灿, 罗玉玲. 基于熵图像静态分析技术的勒索软件分类研究[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 91-104. |
[6] | 王鲁娜, 杜洪波, 朱立军. 基于流形正则的堆叠胶囊自编码器优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 76-85. |
[7] | 王利娥, 王艺汇, 李先贤. POI推荐中的多源数据融合和隐私保护方法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 87-101. |
[8] | 王宇航, 张灿龙, 李志欣, 王智文. 体现用户意图和风格的图像描述生成[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 91-103. |
[9] | 李正光, 陈恒, 林鸿飞. 基于双向语言模型的社交媒体药物不良反应识别[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 40-48. |
[10] | 万黎明, 张小乾, 刘知贵, 宋林, 周莹, 李理. 基于高效通道注意力的UNet肺结节CT图像分割[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 66-75. |
[11] | 张萍, 徐巧枝. 基于多感受野与分组混合注意力机制的肺结节分割研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 76-87. |
[12] | 陈知明, 张江, 邱汉清, 戴颖成, 吴宇鑫, 李建军. 基于密集连接的高分辨率遥感图像分类[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 88-94. |
[13] | 孔亚钰, 卢玉洁, 孙中天, 肖敬先, 侯昊辰, 陈廷伟. 面向强化当前兴趣的图神经网络推荐算法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 151-160. |
[14] | 吴军, 欧阳艾嘉, 张琳. 基于多头注意力机制的磷酸化位点预测模型[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 161-171. |
[15] | 邓文轩, 杨航, 靳婷. 基于注意力机制的图像分类降维方法[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 32-40. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |