广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 8-21.doi: 10.16088/j.issn.1001-6600.2023040201

• • 上一篇    下一篇

多维混沌系统的构建及其多通道自适应控制

颜闽秀*, 靳琪森   

  1. 沈阳化工大学 信息工程学院, 辽宁 沈阳 110142
  • 收稿日期:2023-04-02 修回日期:2023-05-01 发布日期:2023-12-04
  • 通讯作者: 颜闽秀(1972—), 女, 福建仙游人, 沈阳化工大学副教授, 博士。 E-mail: yanminxiu@syuct.edu.cn
  • 基金资助:
    中国—北马其顿政府间科技合作项目(国科外[2019]22: 6-8); 辽宁省教育厅基本科研项目(LJKMZ20220779); 辽宁省自然科学基金(2022-BS-211); 沈阳市科技计划项目(22-322-3-38)

Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control

YAN Minxiu*, JIN Qisen   

  1. College of Information Engineering, Shenyang University of Chemical Technology, Shenyang Liaoning 110142, China
  • Received:2023-04-02 Revised:2023-05-01 Published:2023-12-04

摘要: 为改善低维混沌系统行为简单、密钥空间小等问题,本文提出一种多维混沌系统的设计方法,给出了系统结构及其平衡点通式,利用Si’lnikov定理验证该系统具有Smale马蹄意义下的混沌性质。以三维混沌系统为例,对该混沌系统进行动力学特性分析及其偏移增强控制,并利用Multisim电路仿真软件搭建该混沌系统,验证了系统的可实现性。基于自适应理论,设计一种多通道的自适应同步控制器,能够实现多种系统误差组合下的同步,提高了混沌系统在保密通信中的安全性。

关键词: 混沌系统, Si’lnikov, 同宿轨道, Smale马蹄, 混沌电路, 同步控制

Abstract: To solve the problem of simple behavior and small key space in low dimensional chaotic systems, a design method of multi-dimensional chaotic systems is proposed. The general formula of system structure and equilibrium point are given, and the chaotic property of Smale horseshoe system is verified by Si’lnikov theorem. Taking a three-dimensional chaotic system as an example, its dynamic characteristics are analyzed and its displacement control is enhanced. The chaos system is constructed by Multisim circuit simulation software, and the realization of the system is verified. Based on the adaptive theory, a multi-channel adaptive synchronization controller is designed. The controller can realize synchronization under various system error combinations and improve the security of chaotic systems in secure communication.

Key words: chaotic system, Si’lnikov, homologous orbit, Smale horseshoe, chaotic circuit, synchronous control

中图分类号:  O415.5;TP273

[1] RAHMAN Z A S A, JASIM B H. Hidden dynamics investigation, fast adaptive synchronization, and chaos-based secure communication scheme of a new 3D fractional-order chaotic system[J]. Inventions, 2022, 7(4): 108. DOI: 10.3390/inventions7040108.
[2] 梁钰婷,罗玉玲,张顺生.基于压缩感知的混沌图像加密研究综述[J].广西师范大学学报(自然科学版),2022,40(5):49-58.DOI:10.16088/j.issn.1001-6600.2022012003.
[3] DIMITROVA E S, YORDANOV O I. Statistics of some low-dimensional chaotic flows[J]. International Journal of Bifurcation and Chaos, 2001, 11(10): 2675-2682. DOI: 10.1142/S0218127401003735.
[4] AZIMI S, ASHTARI O, SCHNEIDER T M. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method[J]. Physical Review E, 2022, 105(1): 014217. DOI: 10.1103/PhysRevE.105.014217.
[5] 王伟豪,刘树勇,柴凯,等.类元素周期律框架下新混沌系统的构造方法研究[J].武汉理工大学学报,2020,42(5):77-85.
[6] ZANG H Y, LIU J Y, LI J. Construction of a class of high-dimensional discrete chaotic systems[J]. Mathematics, 2021, 9(4): 365. DOI: 10.3390/math9040365.
[7] WANG X. Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system[J]. Chaos Solitons & Fractals, 2009, 42(4): 2208-2217. DOI: 10.1016/j.chaos.2009.03.137.
[8] ZHOU L Q, CHEN F Q. Hopf bifurcation and Si’lnikov chaos of Genesio system[J]. Chaos, Solitons, and Fractals, 2009, 40(3): 1413-1422. DOI: 10.1016/j.chaos.2007.09.033.
[9] LI C B, SPROTT J C, LIU Y J, et al. Offset boosting for breeding conditional symmetry[J]. International Journal of Bifurcation and Chaos, 2018, 28(14): 1850163. DOI: 10.1142/S0218127418501638.
[10] LI C B, GU Z Y, LIU Z H, et al. Constructing chaoticrepellors[J]. Chaos, Solitons, and Fractals, 2021, 142: 110544. DOI: 10.1016/j.chaos.2020.110544.
[11] MA C G, MOU J, XIONG L, et al. Dynamical analysis of a new chaotic system: asymmetricmultistability, offset boosting control and circuit realization[J]. Nonlinear Dynamics, 2021, 103(3): 2867-2880. DOI: 10.1007/s11071-021-06276-8.
[12] TAKOUGANG KINGNI S, RAJAGOPAL K, ÇIÇEK S, et al. Dynamic analysis, FPGA implementation, and cryptographic application of an autonomous 5D chaotic system with offset boosting[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(6): 950-961. DOI: 10.1631/FITEE.1900167.
[13] LENG X X, TIAN B W, ZHANG L M, et al. Study of a novel conservative chaotic system with special initial offset boosting behaviors[J]. Chaos, 2022, 32(7): 073102. DOI: 10.1063/5.0093110.
[14] ZHANG Z F, HUANG L L, LIU J, et al. A new method of constructing cyclic symmetric conservative chaotic systems and improved offset boosting control[J]. Chaos, Solitons, and Fractals, 2022, 158: 112103. DOI: 10.1016/j.chaos.2022.112103.
[15] KUZ’MENKO A A. Forced sliding mode control for chaotic systems synchronization[J]. Nonlinear Dynamics, 2022, 109(3): 1763-1775. DOI: 10.1007/s11071-022-07552-x.
[16] IZADBAKHSH A, GHOLIZADE-NARM H, DEYLAMI A. Observer-based adaptive controller design for chaos synchronization using Bernstein-type operators[J]. International Journal of Robust and Nonlinear Control, 2022, 32(7): 4318-4335. DOI: 10.1002/rnc.6026.
[17] LI S J, WU Y W, ZHENG G. Adaptive synchronization for hyperchaotic Liu system[J]. Frontiers in Physics, 2022, 9: 812048. DOI: 10.3389/fphy.2021.812048.
[18] LI Y, WANG H P, TIAN Y. Fractional-order adaptive controller for chaotic synchronization and application to a dual-channel secure communication system[J]. Modern Physics Letters B, 2019, 33(24): 1950290. DOI: 10.1142/S0217984919502907.
[19] TAN Z L, LIU Y, SUN J Y, et al. Chaos synchronization control for stochastic nonlinear systems of interior PMSMs based on fixed-time stability theorem[J]. Applied Mathematics and Computation, 2022, 430: 127115. DOI: 10.1016/j.amc.2022.127115.
[20] 颜闽秀,林建峰,谢俊红.具有无穷多共存类吸引子的保守混沌系统同步控制[J].南京邮电大学学报(自然科学版),2021,41(6):66-74.DOI:10.14132/j.cnki.1673-5439.2021.06.010.
[21] 徐昌彪,钟德,郭桃桃.具有多种平衡点类型的大范围混沌系统及其拓扑马蹄[J].振动与冲击,2020,39(9):235-241,247.DOI:10.13465/j.cnki.jvs.2020.09.033.
[1] 邵慧婷, 杨启贵. 具有4个正Lyapunov指数的六维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 433-444.
[2] 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 96-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董淑龙, 马姜明, 辛文杰. 景观视觉评价研究进展与趋势——基于CiteSpace的知识图谱分析[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 1 -13 .
[2] 马乾然, 韦笃取. 基于线性耦合储备池计算的电机系统混沌预测研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 1 -7 .
[3] 赵伟, 田帅, 张强, 王耀申, 王思博, 宋江. 基于改进YOLOv5的平贝母检测模型[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 22 -32 .
[4] 高飞, 郭晓斌, 袁冬芳, 曹富军. 改进PINNs方法求解边界层对流占优扩散方程[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 33 -50 .
[5] 周桥, 翟江涛, 荚东升, 孙浩翔. 基于卷积门控循环神经网络的Web攻击检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 51 -61 .
[6] 林玩聪, 韩明杰, 靳婷. 基于数据增强的多层次论点立场分类方法[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 62 -69 .
[7] 温雪岩, 谷训开, 李祯, 黄英来, 黄鹤林. 融合释义与双向交互的成语阅读理解方法研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 70 -79 .
[8] 宋冠武, 陈知明, 李建军. 基于ResNet-50的级联注意力遥感图像分类[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 80 -91 .
[9] 徐紫钰, 吴克晴. Caputo型分数阶微分系统正解的唯一性[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 92 -104 .
[10] 郭洁, 索洪敏, 朱怡颖, 郭加超. 一类具有临界指数和不定位势的Kirchhoff型问题解的存在性[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 105 -112 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发