|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (6): 8-21.doi: 10.16088/j.issn.1001-6600.2023040201
颜闽秀*, 靳琪森
YAN Minxiu*, JIN Qisen
摘要: 为改善低维混沌系统行为简单、密钥空间小等问题,本文提出一种多维混沌系统的设计方法,给出了系统结构及其平衡点通式,利用Si’lnikov定理验证该系统具有Smale马蹄意义下的混沌性质。以三维混沌系统为例,对该混沌系统进行动力学特性分析及其偏移增强控制,并利用Multisim电路仿真软件搭建该混沌系统,验证了系统的可实现性。基于自适应理论,设计一种多通道的自适应同步控制器,能够实现多种系统误差组合下的同步,提高了混沌系统在保密通信中的安全性。
中图分类号: O415.5;TP273
[1] RAHMAN Z A S A, JASIM B H. Hidden dynamics investigation, fast adaptive synchronization, and chaos-based secure communication scheme of a new 3D fractional-order chaotic system[J]. Inventions, 2022, 7(4): 108. DOI: 10.3390/inventions7040108. [2] 梁钰婷,罗玉玲,张顺生.基于压缩感知的混沌图像加密研究综述[J].广西师范大学学报(自然科学版),2022,40(5):49-58.DOI:10.16088/j.issn.1001-6600.2022012003. [3] DIMITROVA E S, YORDANOV O I. Statistics of some low-dimensional chaotic flows[J]. International Journal of Bifurcation and Chaos, 2001, 11(10): 2675-2682. DOI: 10.1142/S0218127401003735. [4] AZIMI S, ASHTARI O, SCHNEIDER T M. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method[J]. Physical Review E, 2022, 105(1): 014217. DOI: 10.1103/PhysRevE.105.014217. [5] 王伟豪,刘树勇,柴凯,等.类元素周期律框架下新混沌系统的构造方法研究[J].武汉理工大学学报,2020,42(5):77-85. [6] ZANG H Y, LIU J Y, LI J. Construction of a class of high-dimensional discrete chaotic systems[J]. Mathematics, 2021, 9(4): 365. DOI: 10.3390/math9040365. [7] WANG X. Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system[J]. Chaos Solitons & Fractals, 2009, 42(4): 2208-2217. DOI: 10.1016/j.chaos.2009.03.137. [8] ZHOU L Q, CHEN F Q. Hopf bifurcation and Si’lnikov chaos of Genesio system[J]. Chaos, Solitons, and Fractals, 2009, 40(3): 1413-1422. DOI: 10.1016/j.chaos.2007.09.033. [9] LI C B, SPROTT J C, LIU Y J, et al. Offset boosting for breeding conditional symmetry[J]. International Journal of Bifurcation and Chaos, 2018, 28(14): 1850163. DOI: 10.1142/S0218127418501638. [10] LI C B, GU Z Y, LIU Z H, et al. Constructing chaoticrepellors[J]. Chaos, Solitons, and Fractals, 2021, 142: 110544. DOI: 10.1016/j.chaos.2020.110544. [11] MA C G, MOU J, XIONG L, et al. Dynamical analysis of a new chaotic system: asymmetricmultistability, offset boosting control and circuit realization[J]. Nonlinear Dynamics, 2021, 103(3): 2867-2880. DOI: 10.1007/s11071-021-06276-8. [12] TAKOUGANG KINGNI S, RAJAGOPAL K, ÇIÇEK S, et al. Dynamic analysis, FPGA implementation, and cryptographic application of an autonomous 5D chaotic system with offset boosting[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(6): 950-961. DOI: 10.1631/FITEE.1900167. [13] LENG X X, TIAN B W, ZHANG L M, et al. Study of a novel conservative chaotic system with special initial offset boosting behaviors[J]. Chaos, 2022, 32(7): 073102. DOI: 10.1063/5.0093110. [14] ZHANG Z F, HUANG L L, LIU J, et al. A new method of constructing cyclic symmetric conservative chaotic systems and improved offset boosting control[J]. Chaos, Solitons, and Fractals, 2022, 158: 112103. DOI: 10.1016/j.chaos.2022.112103. [15] KUZ’MENKO A A. Forced sliding mode control for chaotic systems synchronization[J]. Nonlinear Dynamics, 2022, 109(3): 1763-1775. DOI: 10.1007/s11071-022-07552-x. [16] IZADBAKHSH A, GHOLIZADE-NARM H, DEYLAMI A. Observer-based adaptive controller design for chaos synchronization using Bernstein-type operators[J]. International Journal of Robust and Nonlinear Control, 2022, 32(7): 4318-4335. DOI: 10.1002/rnc.6026. [17] LI S J, WU Y W, ZHENG G. Adaptive synchronization for hyperchaotic Liu system[J]. Frontiers in Physics, 2022, 9: 812048. DOI: 10.3389/fphy.2021.812048. [18] LI Y, WANG H P, TIAN Y. Fractional-order adaptive controller for chaotic synchronization and application to a dual-channel secure communication system[J]. Modern Physics Letters B, 2019, 33(24): 1950290. DOI: 10.1142/S0217984919502907. [19] TAN Z L, LIU Y, SUN J Y, et al. Chaos synchronization control for stochastic nonlinear systems of interior PMSMs based on fixed-time stability theorem[J]. Applied Mathematics and Computation, 2022, 430: 127115. DOI: 10.1016/j.amc.2022.127115. [20] 颜闽秀,林建峰,谢俊红.具有无穷多共存类吸引子的保守混沌系统同步控制[J].南京邮电大学学报(自然科学版),2021,41(6):66-74.DOI:10.14132/j.cnki.1673-5439.2021.06.010. [21] 徐昌彪,钟德,郭桃桃.具有多种平衡点类型的大范围混沌系统及其拓扑马蹄[J].振动与冲击,2020,39(9):235-241,247.DOI:10.13465/j.cnki.jvs.2020.09.033. |
[1] | 邵慧婷, 杨启贵. 具有4个正Lyapunov指数的六维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 433-444. |
[2] | 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 96-105. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |