|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 307-323.doi: 10.16088/j.issn.1001-6600.2021122301
马军*
MA Jun*
摘要: 生物神经元是神经系统处理信号的基本单元,其复杂的解剖结构和突触可塑性使得神经元对外界刺激具有很强的自适应性,其放电模态也具有多样性。在脑皮层内存在不同的功能区,功能区内的神经元聚集成不同拓扑结构的网络,相互协作对单一外部刺激进行编码。不同功能区的神经元相互通信,以多层网络同步方式传递信号,驱动肌体和器官协作来完成应激反应。神经元网络群体电活动主要取决于网络局域动力学、连接链路和耦合通道的物理属性,网络拓扑结构及物理效应。构建可靠的生物物理神经元模型,强化耦合通道的可控性,分析神经元网络同步和斑图演化过程中能量输运的特征,噪声驱动的物理机理,神经系统选频和滤波响应的物理机制等对于认知神经系统模态响应和预防神经性疾病具有重要意义。本文从单个神经元电路的功能强化,如在非线性电路嵌入不同的物理器件来设计感知温度、光照、声波、外磁场和电磁辐射的功能神经元电路,到神经元电路内部能量存储和交换,听觉和视觉神经元滤波选频,耦合通道耗能和储能,场能量无量纲化到哈密顿能量,场耦合同步到共振同步,神经元网络斑图及同步稳定性,系统地介绍和评论神经元功能性增强及网络动力学相关问题,为进一步设计智能化的功能神经元阵列和装置提供理论参考。
中图分类号:
[1]CANAVIER C C, CLARK J W, BYRNE J H. Routes to chaos in a model of a bursting neuron[J]. Biophysical Journal, 1990, 57(6): 1245-1251. [2]BEN ACHOUR S, PASCUAL O. Astrocyte-neuron communication: functional consequences[J]. Neurochemical Research, 2012, 37(11): 2464-2473. [3]于文婷,张娟,唐军.动态突触、神经耦合与时间延迟对神经元发放的影响[J].物理学报,2017,66(20):200201. [4]徐泠风,李传东,陈玲.神经元模型对比分析[J].物理学报,2016,65(24):240701. [5]薛晓丹,王美丽,邵雨竹,等.基于抑制性突触可塑性的神经元放电率自稳态机制[J].物理学报,2019,68(7):078701. [6]YANG X L, YU Y H, SUN Z K. Autapse-induced multiple stochastic resonances in a modular neuronal network[J]. Chaos, 2017, 27(8): 083117. [7]YAO C G, HE Z W, NAKANO T, et al. Inhibitory-autapse-enhanced signal transmission in neural networks[J]. Nonlinear Dynamics, 2019, 97(2): 1425-1437. [8]HERRMANN C S, KLAUS A. Autapse turns neuron into oscillator[J]. International Journal of Bifurcation and Chaos, 2004, 14(2): 623-633. [9]WANG C N, GUO S L, XU Y, et al. Formation of autapse connected to neuron and its biological function[J]. Complexity, 2017, 2017: 5436737. [10]任国栋,武刚,马军,等.一类自突触作用下神经元电路的设计和模拟[J].物理学报,2015,64(5):058702. [11]FOX R F. Stochastic versions of the Hodgkin-Huxley equations[J]. Biophysical Journal, 1997, 72(5): 2068-2074. [12]NOBLE D. Applications of Hodgkin-Huxley equations to excitable tissues[J]. Physiological Reviews, 1966, 46(1): 1-50. [13]GONZÀLEZ-MIRANDA J M. Complex bifurcation structures in the Hindmarsh-Rose neuron model[J]. International Journal of Bifurcation and Chaos, 2007, 17(9): 3071-3083. [14]INNOCENTI G, GENESIO R. On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron[J]. Chaos, 2009, 19(2): 023124. [15]吴望生,唐国宁.不同耦合下混沌神经元网络的同步[J].物理学报,2012,61(7):070505. [16]白婧,关富荣,唐国宁.神经元网络中局部同步引发的各种效应[J].物理学报,2021,70(17):170502. [17]李娜,杨晓丽.空间关联白噪声影响下小世界神经元网络系统的同步动力学[J].物理学报,2015,64(22):220503. [18]汪芃,李倩昀,黄志精,等.在兴奋—抑制混沌神经元网络中有序波的自发形成[J].物理学报,2018,67(17):170501. [19]谢盈,朱志刚,张晓锋,等.光电流驱动下非线性神经元电路的放电模式控制[J].物理学报,2021,70(21):210502. [20]陈军,李春光.具有自适应反馈突触的神经元模型中的混沌:电路设计[J].物理学报,2011,60(5):050503. [21]BABACAN Y, KAÇAR F, GÜRKAN K. A spiking and bursting neuron circuit based on memristor[J]. Neurocomputing, 2016, 203: 86-91. [22]KORNIJCUK V, LIM H, SEOK J Y, et al. Leaky integrate-and-fire neuron circuit based on floating-gate integrator[J]. Frontiers in Neuroscience, 2016, 10: 212. [23]LEE J J, PARK J, KWON M W, et al. Integrated neuron circuit for implementing neuromorphic system with synaptic device[J]. Solid-State Electronics, 2018, 140: 34-40. [24]SAVINO G V, FORMIGLI C M. Nonlinear electronic circuit with neuron like bursting and spiking dynamics[J]. Bio Systems, 2009, 97(1): 9-14. [25]XU Y, LIU M H, ZHU Z G, et al. Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent[J]. Chinese Physics B, 2020, 29(9): 098704. [26]ALAM M N, MCGINTY D, SZYMUSIAK R. Neuronal discharge of preoptic/anterior hypothalamic thermosensitive neurons: relation to NREM sleep[J]. American Journal of Physiology, 1995, 269(5): R1240-R1249. [27]VITZTHUM H, MÜLLER M, HOMBERG U. Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light[J]. Journal of Neuroscience, 2002, 22(3): 1114-1125. [28]PÉREZ-GONZÖLEZ D, MALMIERCA M S. Adaptation in the auditory system: an overview[J]. Frontiers in Integrative Neuroscience, 2014, 8: 19. [29]FU K M G, JOHNSTON T A, SHAH A S, et al. Auditory cortical neurons respond to somatosensory stimulation[J]. Journal of Neuroscience, 2003, 23(20): 7510-7515. [30]KYPRIANIDIS I M, PAPACHRISTOU V, STOUBOULOS I N, et al. Dynamics of coupled chaotic Bonhoeffer-van der Pol oscillators[J]. WSEAS Transactions on Systems, 2012, 11(9): 516-526. [31]MIYAKAWA K, TANAKA T, ISIKAWA H. Dynamics of a stochastic oscillator in an excitable chemical reaction system[J]. Physical Review E, 2003, 67(6): 066206. [32]ZHONG S, QI F, XIN H W. Internal stochastic resonance in a model system for intracellular calcium oscillations[J]. Chemical Physics Letters, 2001, 342(5/6): 583-586. [33]BULSARA A, JACOBS E W, ZHOU T, et al. Stochastic resonance in a single neuron model: theory and analog simulation[J]. Journal of Theoretical Biology, 1991, 152(4): 531-555. [34]WANG Y, CHIK D T, WANG Z D. Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons[J]. Physical Review E, 2000, 61(1): 740-746. [35]SONG X L, WANG H T, CHEN Y. Coherence resonance in an autaptic Hodgkin-Huxley neuron with time delay[J]. Nonlinear Dynamics, 2018, 94(1): 141-150. [36]PAKDAMAN K, TANABE S, SHIMOKAWA T. Coherence resonance and discharge time reliability in neurons and neuronal models[J]. Neural Networks, 2001, 14(6/7): 895-905. [37]KOBE D H. Helmholtz’s theorem revisited[J]. American Journal of Physics, 1986, 54(6): 552-554. [38]SARASOLA C, TORREALDEA F J, D’ANJOU A, et al. Energy balance in feedback synchronization of chaotic systems[J]. Physical Review E, 2004, 69(1): 011606. [39]王春妮,王亚,马军.基于亥姆霍兹定理计算动力学系统的哈密顿能量函数[J].物理学报,2016,65(24):240501. [40]ZHOU P, HU X K, ZHU Z G, et al. What is the most suitable Lyapunov function?[J]. Chaos, Solitons & Fractals, 2021, 150: 111154. [41]XU Y, GUO Y Y, REN G D, et al. Dynamics and stochastic resonance in a thermosensitive neuron[J]. Applied Mathematics and Computation, 2020, 385: 125427. [42]LIU Y, XU W J, MA J, et al. A new photosensitive neuron model and its dynamics[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(9): 1387-1396. [43]ZHOU P, YAO Z, MA J, et al. A piezoelectric sensing neuron and resonance synchronization between auditory neurons under stimulus[J]. Chaos, Solitons & Fractals, 2021, 145: 110751. [44]ZHANG Y, ZHOU P, TANG J, et al. Mode selection in a neuron driven by Josephson junction current in presence of magnetic field[J]. Chinese Journal of Physics, 2021, 71: 72-84. [45]CROTTY P, SCHULT D, SEGALL K. Josephson junction simulation of neurons[J]. Physical Review E, 2010, 82(1): 011914. [46]ZHANG Y, WANG C N, TANG J, et al. Phase coupling synchronization of FHN neurons connected by a Josephson junction[J]. Science China Technological Sciences, 2020, 63(11): 2328-2338. [47]WANG C N, TANG J, MA J. Minireview on signal exchange between nonlinear circuits and neurons via field coupling[J]. The European Physical Journal Special Topics, 2019, 228(10): 1907-1924. [48]WU F Q, MA J, REN G D. Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation[J]. Journal of Zhejiang University-Science A, 2018, 19(12): 889-903. [49]WANG C N, LV M, ALSAEDI A, et al. Synchronization stability and pattern selection in a memristive neuronal network[J]. Chaos, 2017, 27(11): 113108. [50]LV M, WANG C N, REN G D, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3): 1479-1490. [51]LV M, MA J, YAO Y G, et al. Synchronization and wave propagation in neuronal network under field coupling[J]. Science China Technological Sciences, 2019, 62(3): 448-457. [52]WU F Q, WANG C N, XU Y, et al. Model of electrical activity in cardiac tissue under electromagnetic induction[J]. Scientific Reports, 2016, 6(1): 28. [53]MA J, WU F Q, HAYAT T, et al. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media[J].Physica A: Statistical Mechanics and Its Applications, 2017, 486: 508-516. [54]ZHANG X F, MA J. Wave filtering and firing modes in a light-sensitive neural circuit[J]. Journal of Zhejiang University-Science A, 2021, 22(9): 707-720. [55]GUO Y T, ZHOU P, YAO Z, et al. Biophysical mechanism of signal encoding in an auditory neuron[J]. Nonlinear Dynamics, 2021, 105(4): 3603-3614. [56]MA J, YANG Z Q, YANG L J, et al. A physical view of computationalneurodynamics[J]. Journal of Zhejiang University-Science A, 2019, 20(9): 639-659. [57]YAO Z, WANG C N. Control the collective behaviors in a functional neural network[J]. Chaos, Solitons & Fractals, 2021, 152: 111361. [58]ZHOU Q, WEI D Q. Collective dynamics of neuronal network under synapse and field coupling[J]. Nonlinear Dynamics, 2021, 105(1): 753-765. [59]ZHANG Z Z, XU W J, ZENG S Y, et al. Optimal network structure to induce the maximal small-world effect[J]. Chinese Physics B, 2014, 23(2): 028902. [60]ZHAO M, ZHOU C S, LÜ J, et al. Competition between intra-community and inter-community synchronization and relevance in brain cortical networks[J]. Physical Review E, 2011, 84(1): 016109. [61]QIU S H, SUN K J, DI Z R. Collective dynamics of neural networks with sleep-related biological drives in Drosophila[J]. Frontiers in Computational Neuroscience, 2021, 15: 616193. [62]WANG C Y, ZHANG J Q, WU Z X, et al. Collective firing patterns of neuronal networks with short-term synaptic plasticity[J]. Physical Review E, 2021, 103(2): 022312. [63]DU M M, LI J J, YUAN Z X, et al. Astrocyte and ions metabolism during epileptogenesis: a review for modeling studies[J]. Chinese Physics B, 2020, 29(3): 038701. |
[1] | 钟辉, 宋树祥, 岑明灿, 蔡超波, 蒋品群, 刘振宇. 基于采样计算的差分N通道滤波器[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 58-67. |
[2] | 马新娜, 赵猛, 祁琳. 基于卷积脉冲神经网络的故障诊断方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 112-120. |
[3] | 武康康, 朱旭飞, 陆叶, 周鹏, 董翠, 戴沁璇, 周闰昌. 基于最小二乘法的LS-FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 89-99. |
[4] | 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9-20. |
[5] | 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55-67. |
[6] | 王瑞, 宋树祥, 夏海英. 融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 1-10. |
[7] | 蒋品群, 顾燊, 宋树祥, 岑明灿. N通道带阻滤波器谐波分析与抗混叠研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 81-89. |
[8] | 张灿龙, 李燕茹, 李志欣, 王智文. 基于核相关滤波与特征融合的分块跟踪算法[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 12-23. |
[9] | 谢丽娜, 蒋品群, 宋树祥, 岑明灿. 一款低损耗低噪声宽调谐的高阶级联N通道滤波器[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 37-44. |
[10] | 刘国伦, 宋树祥, 岑明灿, 李桂琴, 谢丽娜. 带宽可调带阻滤波器的设计[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 1-8. |
[11] | 梁晓萍,罗晓曙. 基于遗传自适应的维纳滤波图像去模糊算法[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 17-23. |
[12] | 袁伟强,宋树祥,程 洋,张勇敢. 超宽带微带带通滤波器的设计[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 32-38. |
[13] | 孙妤喆, 卢磊, 罗晓曙, 郭磊, 郝占龙, 唐堂. 结合非局部均值滤波的双边滤波图像去噪方法[J]. 广西师范大学学报(自然科学版), 2017, 35(2): 32-38. |
[14] | 彭新建,翁小雄. 基于萤火虫算法优化BP神经网络的公交行程时间预测[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 28-36. |
[15] | 王剑, 黄植功, 许金海. 基于优化EKF的永磁同步电机转速估计[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 11-17. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |