广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (2): 145-163.doi: 10.16088/j.issn.1001-6600.2025040101

• 智能信息处理 • 上一篇    下一篇

融合密度峰值决策的粒子群优化算法

赵晨颖1, 袁书娟1*, 孔闪闪1, 杨爱民1,2,3,4,5, 魏佳妹1   

  1. 1.华北理工大学 理学院,河北 唐山 063210;
    2.铁矿石优选与铁前工艺智能化河北省工程研究中心(华北理工大学),河北 唐山 063210;
    3.河北省数据科学与应用重点实验室(华北理工大学),河北 唐山 063210;
    4.唐山市工程计算重点实验室(华北理工大学),河北 唐山 063210;
    5.唐山市智能工业与图像处理技术创新中心(华北理工大学),河北 唐山 063210
  • 收稿日期:2025-04-01 修回日期:2025-07-05 发布日期:2026-02-03
  • 通讯作者: 袁书娟(1980—),女,河北迁安人,华北理工大学副教授。E-mail: yuanshujuan@ncst.edu.cn
  • 基金资助:
    国家自然科学基金(52074126);河北省自然科学基金(E2022209110)

Particle Swarm Optimization Algorithm with Density PeakClustering Decision Values

ZHAO Chenying1, YUAN Shujuan1*, KONG Shanshan1, YANG Aimin1,2,3,4,5, WEI Jiamei1   

  1. 1. College of Science, North China University of Science and Technology, Tangshan Hebei 063210, China;
    2. Hebei Engineering Research Center for the Intelligentization of Iron Ore Optimization and Ironmaking Raw Mate rialsPreparation Processes (North China University of Science and Technology), Tangshan Hebei 063210, China;
    3. Hebei Key Laboratory of Data Science and Application (North China University of Science and Technology), Tangshan Hebei 063210, China;
    4. The Key Laboratory of Engineering Computing in Tangshan City (North China Universityof Science and Technology), Tangshan Hebei 063210, China;
    5. Tangshan Intelligent Industry and Image ProcessingTechnology Innovation Center (North China University of Science and Technology), Tangshan Hebei 063210, China
  • Received:2025-04-01 Revised:2025-07-05 Published:2026-02-03

摘要: 粒子群优化算法(PSO)作为群智能优化的一种经典算法得到广泛应用,但其面对不同问题时不能根据群体状态进行实时调整,缺乏一定灵活性。为此,本文提出一种融合密度峰值决策的粒子群优化算法(DVPSO)。针对初始化,设计精英佳点集双型映射,提升不同类型粒子分布质量;针对速度更新,构建基于密度峰值的信息交互机制,平衡粒子搜索倾向;针对位置更新,提出步长搜索算子的动态双邻域搜索策略,结合种群状态及寻优范围变化,调控粒子移动的同时兼顾搜索灵活性。仿真实验选用12个测试函数,将DVPSO与PSO及其他5种较新的群智能优化算法进行对比,并在2个工程问题上与5种新兴智能算法对比。结果表明,DVPSO算法具备较好的搜索精度和稳定性,验证了算法的适应性和良好性能。

关键词: 粒子群优化算法, 密度峰值, 精英佳点集, 信息交互, 动态邻域搜索

Abstract: Particle swarm optimization (PSO) algorithm, as a classical algorithm of swarm intelligence optimization, has been widely used in practice. However, in the face of different problems, it cannot make real-time adjustments according to the group status, and lacks certain flexibility, therefore, a particle swarm optimization algorithm (DVPSO) based on fusion density peak decision is proposed. For initialization, design the binary mapping of elite point set in order to improve the distribution quality of different types of particles. For velocity update, an information exchange mechanism based on density peak is constructed to balance the particle search tendency. For position updating, a dynamic two-neighborhood search strategy of step size search operator is proposed, which combines population state and optimization range changes to regulate particle movement and give consideration to search flexibility. 12 test functions were compared with PSO and 5 new swarm intelligent optimization algorithms, and 2 engineering problems were compared with 5 new intelligent algorithms. The results show that the DVPSO algorithm has better search accuracy and stability, which verifies the adaptability and good performance of the algorithm.

Key words: particle swarm optimization algorithm, peak density, elite point set, information interaction, dynamic neighborhood search

中图分类号:  TP301.6;TP391;TP18

[1] KENNEDY J, EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.Piscataway, NJ:IEEE, 1995:1942-1948.DOI:10.1109/ICNN.1995.488968.
[2] XUE J K, SHEN B.A novel swarm intelligence optimization approach:sparrow search algorithm[J].Systems Science & Control Engineering, 2020, 8(1):22-34.DOI:10.1080/21642583.2019.1708830.
[3] HEIDARI A A, MIRJALILI S, FARIS H, et al.Harris hawks optimization:algorithm and applications[J].Future Generation Computer Systems, 2019, 97:849-872.DOI:10.1016/j.future.2019.02.028.
[4] TROJOVSKÝ P, DEHGHANI M.Pelican optimization algorithm:a novel nature-inspired algorithm for engineering applications[J].Sensors, 2022,22(3):855.DOI:10.3390/s22030855.
[5] LIU Q X, DU S Z, VAN WYK B J, et al.Niching particle swarm optimization based on Euclidean distance and hierarchical clustering for multimodal optimization[J].Nonlinear Dynamics, 2020, 99(3):2459-2477.DOI:10.1007/s11071-019-05414-7.
[6] FREITAS D, LOPES L G, MORGADO-DIAS F.Particle swarm optimisation:a historical review up to the current developments[J].Entropy, 2020, 22(3):362.DOI:10.3390/e22030362.
[7] 商立群, 闵鹏波, 张建涛.基于改进PSO算法的光伏阵列MPPT研究[J].传感器与微系统, 2024, 43(8):35-39.DOI:10.13873/J.1000-9787(2024)08-0035-05.
[8] 朱茂桃, 刘欢, 吴佘胤, 等.混合策略改进的粒子群算法[J].重庆理工大学学报(自然科学), 2024, 38(1):110-121.DOI:10.3969/j.issn.1674-8425(z).2024.01.013.
[9] 蒋凌云, 魏庆来, 张峰华, 等.基于改进粒子群优化算法的PID控制器参数整定[J].控制工程, 2024, 31(3):470-477.DOI:10.14107/j.cnki.kzgc.20210776.
[10] WATANABE K, XU X S.Nonlinear crossing strategy-based particle swarm optimizations with time-varying acceleration coefficients[J].Applied Intelligence, 2024, 54(13):7229-7277.DOI:10.1007/s10489-024-05502-1.
[11] LONG X, CAI W W, YANG L P, et al.Improved particle swarm optimization with reverse learning and neighbor adjustment for space surveillance network task scheduling[J].Swarm and Evolutionary Computation, 2024, 85:101482.DOI:10.1016/j.swevo.2024.101482.
[12] XU H R, DENG Q W, ZHANG Z Y, et al.A hybrid differential evolution particle swarm optimization algorithm based on dynamic strategies[J].Scientific Reports, 2025, 15(1):4518.DOI:10.1038/s41598-024-82648-5.
[13] 张振翮, 杨蹈宇, 舒奕彬, 等.改进粒子群优化算法在搬运机器人机械臂中的应用[J].机械传动, 2024, 48(8):49-56.DOI:10.16578/j.issn.1004.2539.2024.08.007.
[14] 郑力宁, 金雪松, 云利军.基于粒子群优化算法的云数据均衡放置策略[J].广西师范大学学报(自然科学版), 2022, 40(3):202-209.DOI:10.16088/j.issn.1001-6600.2021071502.
[15] RODRIGUEZ A, LAIO A.Clustering by fast search and find of density peaks[J].Science, 2014, 344(6191):1492-1496.DOI:10.1126/science.1242072.
[16] 陈梅, 尤远毓秀, 魏礼磊, 等.基于低密度分数的密度峰值聚类算法[J].控制与决策, 2025, 40(5):1599-1609.DOI:10.13195/j.kzyjc.2024.0963.
[17] 华罗庚, 王元, 数论在近似分析中的应用[M].北京:科学出版社, 1978:1-99.
[18] 陶新民, 郭文杰, 李向可, 等.基于密度峰值的依维度重置多种群粒子群算法[J].软件学报, 2023, 34(4):1850-1869.DOI:10.13328/j.cnki.jos.006432.
[19] YU F, GUAN J, WU H R, et al.Lens imaging opposition-based learning for differential evolution with cauchy perturbation[J].Applied Soft Computing, 2024, 152:111211.DOI:10.1016/j.asoc.2023.111211.
[20] 李飞, 乐强, 潘紫微, 等.基于自动快速密度峰值聚类的粒子群动态优化算法[J].计算机应用, 2023, 43(S1):154-162.DOI:10.11772/j.issn.1001-9081.2022060815.
[21] 刘禹彤, 任自艳, 迟连强, 等.基于自适应模型降阶的三维非线性磁场快速计算方法[J].电工技术学报, 2025, 40(1):1-12.DOI:10.19595/j.cnki.1000-6753.tces.232159.
[22] YAO X, LIU Y, LIN G M.Evolutionary programming made faster[J].IEEE Transactions on Evolutionary Computation, 1999, 3(2):82-102.DOI:10.1109/4235.771163.
[23] Institute of Mathematical Statistics, HARTER H L, OWEN D B.Selected tables in mathematical statistics[M].Providence, RI:American Mathematical Society, 1970:171-259.
[24] 唐天兵, 李继发, 严毅.多策略改进的猎人猎物优化算法及其应用[J].广西师范大学学报(自然科学版), 2024, 42(4):153-164.DOI:10.16088/j.issn.1001-6600.2023100902.
[25] AMIRI M H, MEHRABI HASHJIN N, MONTAZERI M, et al.Hippopotamus optimization algorithm:a novel nature-inspired optimization algorithm[J].Scientific Reports, 2024, 14:5032.DOI:10.1038/s41598-024-54910-3.
[26] WANG J, WANG W C, HU X X, et al.Black-winged kite algorithm:a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J].Artificial Intelligence Review, 2024, 57(4):98.DOI:10.1007/s10462-024-10723-4.
[27] AGUSHAKAJ O, EZUGWU A E, SAHA A K, et al.Greater cane rat algorithm (GCRA):a nature-inspired metaheuristic for optimization problems[J].Heliyon, 2024, 10(11):e31629.DOI:10.1016/j.heliyon.2024.e31629.
[28] LIAN J B, HUI G H, MA L, et al.Parrot optimizer:algorithm and applications to medical problems[J].Computers in Biology and Medicine, 2024, 172:108064.DOI:10.1016/j.compbiomed.2024.108064.
[29] OUYANG K C, FU S W, CHEN Y, et al.Escape:an optimization method based on crowd evacuation behaviors[J].Artificial Intelligence Review, 2025, 58(1):19.DOI:10.1007/s10462-024-11008-6.
[1] 黄媛艳, 路旋, 詹凯杰, 曾海勇. 基于DQN的智能电动汽车动态充电调度算法研究[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 52-63.
[2] 黄仁慧, 张锐锋, 文晓浩, 闭金杰, 黄守麟, 李廷会. 基于复数协方差卷积神经网络的运动想象脑电信号解码方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 43-56.
[3] 汤亮, 陈博文, 牛一森, 马荣庚. 基于YOLOv8的雾天车辆行人实时检测方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 72-83.
[4] 梁胤杰, 南新元, 蔡鑫, 李云鹏, 勾海光. 基于数据增广与改进YOLOv8的桥梁缺陷检测[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 84-97.
[5] 刘炜, 王浩, 方宝富. 基于二进制粒子群的救援仿真机器人决策[J]. 广西师范大学学报(自然科学版), 2011, 29(2): 130-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[2] 徐秀虹, 张进燕, 卢羽玲, 梁小平, 廖广凤, 卢汝梅. 萝藦科药用植物中新C21甾体的研究进展(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 1 -16 .
[3] 王星宇, 郑浩楠, 刘肖, 崔世龙, 蔡进军. 壳聚糖基吸附材料的制备及其吸附去除水中污染物的研究进展[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 17 -30 .
[4] 田晟, 冯帅涛, 李嘉. 一种基于复合框架的城市道路场景车辆轨迹提取方法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 31 -51 .
[5] 吕辉, 司可. 基于改进RT-DETR的光伏板缺陷检测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 52 -64 .
[6] 宋冠武, 李建军. 基于自蒸馏边缘细化的遥感图像语义分割[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 65 -76 .
[7] 王旭阳, 梁宇航. 多尺度非对称注意力遥感去雾Transformer[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 77 -89 .
[8] 张胜伟, 曹洁. 融合傅里叶卷积与差异感知的钢材表面微小缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 90 -102 .
[9] 王巍, 李智威, 张赵阳, 张洪, 周蠡, 王振, 黄放, 王灿. 基于IFA-BP神经网络模型的变电站碳排放预测[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 103 -114 .
[10] 罗缘, 朱文忠, 王文, 吴宇浩. 基于改进PatchTST的多步水质预测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(2): 115 -131 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发