广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 41-50.doi: 10.16088/j.issn.1001-6600.2023070103

• 研究论文 • 上一篇    下一篇

基于模块化车辆技术的机场旅客远程接驳系统调度研究

胡郁葱1*, 冯绮璐1, 贺科智2, 龚泰霖1   

  1. 1.华南理工大学 土木与交通学院,广东 广州 510641;
    2.清华大学 工业工程系,北京 100084
  • 收稿日期:2023-07-01 修回日期:2023-09-05 出版日期:2024-07-25 发布日期:2024-09-05
  • 通讯作者: 胡郁葱(1970—),女,湖北武汉人,华南理工大学副教授,博士。E-mail:ychu@scut.edu.cn
  • 基金资助:
    国家自然科学基金(72071079);国家级大学生创新创业训练计划(202210561147)

Scheduling Research of Airport Passengers Remote Shuttle System Based on Modular Vehicle Technology

HU Yucong1*, FENG Qilu1, HE Kezhi2, GONG Tailin1   

  1. 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China;
    2. Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
  • Received:2023-07-01 Revised:2023-09-05 Online:2024-07-25 Published:2024-09-05

摘要: 为改善机场远程停车旅客接驳服务水平,本文提出利用模块化车辆技术构建无人驾驶远程接驳系统,以乘客和运营方总经济成本最小为目标,同时考虑系统的安全性、人数守恒和运营质量等约束,构建不等发车时距的调度模型,并使用商业求解器Gurobi求解。为提升模型求解速度,同时设计了遗传算法,并对2种方式的求解速度以及精度进行比较分析。结果表明:Gurobi求解器所求的发车方案为最优,遗传算法求得近似解,二者仅相差3.4%,但遗传算法所需的计算时间是Gurobi的1%;而从解的质量来看,有微小差别的总成本基本也能满足实际运营需要。此外,通过与穿梭巴士发车方案相比,发现基于模块化车辆技术的发车接驳方案总成本降低64.50%,乘客平均等待时间降低76.35%,证明该方案比传统方案具有更好的经济性,并能大幅提高系统的服务水平。

关键词: 模块化车辆, 远程接驳, 调度, Gurobi求解, 遗传算法

Abstract: In order to improve the level of remote parking passenger shuttle service at airports, an autonomous remote shuttle system using modular vehicle technology is constructed, with the objective of minimizing the total economic cost for passengers and operators, while considering the constraints of system safety, number of people conservation and operation quality, a dispatching model is constructed with unequal departure time by using a commercial solver Gurobi. To improve the speed in model-solving, a genetic algorithm is also designed, and the speed and accuracy in model-solving of the two methods are compared and analyzed. The results show that the departure solution by Gurobi solver is optimal, and the genetic algorithm obtains an approximate solution with a difference of only 3.4%, but the computation time required by the genetic algorithm is 1% of that of Gurobi; and the total cost with a small difference can basically meet the actual operation needs in terms of the quality of the solution. In addition, by comparing with the shuttle bus departure scheme, it is found that the total cost of the departure scheme based on modular vehicle technology is reduced by 64.50% and the average passenger waiting time is reduced by 76.35%, which proves that the scheme has better economy than the traditional scheme and can significantly improve the service level of the system.

Key words: modular vehicle, remote shuttle, dispatching, Gurobi solution, genetic algorithm

中图分类号:  V35;U492.22

[1] GHONEIM N S A, WIRASINGHE S C. Optimum zone structure during peak periods for existing urban rail lines[J]. Transportation Research Part B: Methodological, 1986, 20(1): 7-18. DOI: 10.1016/0191-2615(86)90032-9.
[2] CEDER A. Bus timetables with even passenger loads as opposed to even headways[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001, 1760(1): 3-9. DOI: 10.3141/1760-01.
[3] SZETO W Y, JIANG Y. Transit route and frequency design: Bi-level modeling and hybrid artificial bee colony algorithm approach[J]. Transportation Research Part B: Methodological, 2014, 67: 235-263. DOI: 10.1016/j.trb.2014.05.008.
[4] CEDER A. Bus frequency determination using passenger count data[J]. Transportation Research Part A: General, 1984, 18(5/6): 439-453. DOI: 10.1016/0191-2607(84)90019-0.
[5] 韩博文.考虑实时需求的需求响应式公交调度方法研究[J].广西师范大学学报(自然科学版),2019,37(3):9-20.DOI: 10.16088/j.issn.1001-6600.2019.03.002.
[6] 赵淑芝,王东,刘华胜,等.常规公交线路多车型配置优化模型[J].北京工业大学学报,2017,43(10):1529-1534.DOI: 10.11936/bjutxb2016120016.
[7] ALBRECHT T. Automated timetable design for demand-oriented service on suburban railways[J]. Public Transport, 2009, 1(1): 5-20. DOI: 10.1007/s12469-008-0003-4.
[8] GUO X, SUN H J, WU J J, et al. Multiperiod-based timetable optimization for metro transit networks[J]. Transportation Research Part B: Methodological, 2017, 96: 46-67. DOI: 10.1016/j.trb.2016.11.005.
[9] CHEN Z W, LI X P, ZHOU X S. Operational design for shuttle systems with modular vehicles under oversaturated traffic: Discrete modeling method[J]. Transportation Research Part B-methodological, 2019, 122: 1-19. DOI: 10.1016/j.trb.2019.01.015.
[10] CHEN Z W, LI X P, ZHOU X S. Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method[J]. Transportation Research Procedia, 2019, 38: 359-379. DOI: 10.1016/j.trpro.2019.05.020.
[11] TIAN Q Y, LIN Y H, WANG D Z W. Joint scheduling and formation design for modular-vehicle transit service with time-dependent demand[J]. Transportation Research Part C: Emerging Technologies, 2023, 147: 103986. DOI: 10.1016/j.trc.2022.103986.
[12] YIN Y H, LIU H, ZHANG S L, et al. Joint optimization of modular vehicle schedule and fair passenger flow control under heterogeneous passenger demand in a rail transit system[J]. Computers & Industrial Engineering, 2022, 173: 108749. DOI: 10.1016/j.cie.2022.108749.
[13] HATZENBÜHLER J, JENELIUS E, GIDÓFALVI G. Modular vehicle routing for combined passenger and freight transport[J]. Transportation Research Part A: Policy and Practice, 2023, 173: 103688. DOI: 10.1016/j.tra.2023.103688.
[14] GECCHELIN T, WEBB J. Modular dynamic ride-sharing transport systems[J]. Economic Analysis and Policy, 2019, 61: 111-117. DOI: 10.1016/j.eap.2018.12.003.
[15] ZHANG Z H, TAFRESHIAN A, MASOUD N. Modular transit: Using autonomy and modularity to improve performance in public transportation[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 141: 102033. DOI: 10.1016/j.tre.2020.102033.
[16] JI Y X, LIU B, SHEN Y, et al. Scheduling strategy for transit routes with modular autonomous vehicles[J]. International Journal of Transportation Science and Technology, 2021, 10(2): 121-135. DOI: 10.1016/j.ijtst.2020.12.005.
[17] SHI X W, CHEN Z W, PEI M Y, et al. Variable-capacity operations with modular transits for shared-use corridors[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(9): 230-244. DOI: 10.1177/0361198120928077.
[18] LIU T, CEDER A, RAU A. Using deficit function to determine the minimum fleet size of an autonomous modular public transit system[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(11): 532-541. DOI: 10.1177/0361198120945981.
[19] LIU X H, QU X B, MA X L. Improving flex-route transit services with modular autonomous vehicles[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 149: 102331. DOI: 10.1016/j.tre.2021.102331.
[20] PEI M Y, LIN P Q, DU J, et al. Vehicle dispatching in modular transit networks: A mixed-integer nonlinear programming model[J]. Transportation Research Part E: Logistics and Transportation Review, 2021, 147: 102240. DOI: 10.1016/j.tre.2021.102240.
[21] DAKIC I, YANG K D, MENENDEZ M, et al. On the design of an optimal flexible bus dispatching system with modular bus units: Using the three-dimensional macroscopic fundamental diagram[J]. Transportation Research Part B: Methodological, 2021, 148: 38-59. DOI: 10.1016/j.trb.2021.04.005.
[22] REZGUI D, CHAOUACHI SIALA J, AGGOUNE-MTALAA W, et al. Application of a variable neighborhood search algorithm to a fleet size and mix vehicle routing problem with electric modular vehicles[J]. Computers & Industrial Engineering, 2019, 130: 537-550. DOI: 10.1016/j.cie.2019.03.001.
[23] HUANG Y R, YANG L X, TANG T, et al. Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks[J]. Energy, 2017, 138: 1124-1147. DOI: 10.1016/j.energy.2017.07.117.
[24] 陈晓旭,项煜,杨超,等.基于遗传算法的公交线路发车间隔优化[J].交通与运输,2020,36(5):86-90.DOI: 10.3969/j.issn.1671-3400.2020.05.021.
[25] 邵文,贾顺平,曹文娟.基于混合车型的灵活型接驳公交路径协同优化研究[J].山东科学,2019,32(4):64-73.DOI: 10.3976/j.issn.1002-4026.2019.04.009.
[1] 王卫舵, 王以松, 杨磊. 云资源调度的回答集程序描述性求解[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 94-104.
[2] 余谦, 陈庆锋, 何乃旭, 韩宗钊, 卢家辉. 基于矩阵运算加速的改进社区发现遗传算法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 105-119.
[3] 粟世玮, 郝翊彤, 宋玉娇, 张磊, 智李, 郝翊帆. 含风电-氢能-电转气的园区综合能源系统优化调度[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 48-57.
[4] 肖飞, 康增彦, 王维红. 两种算法用于预测A2/O工艺脱氮条件[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 173-184.
[5] 朱恩文, 朱安麒, 王洁丹, 刘玉娇. 基于EEMD-GA-BP模型的风电功率短期预测研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 166-174.
[6] 胡竣涛, 时小虎, 马德印. 基于均值漂移和遗传算法的护工调度算法[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 27-39.
[7] 许伦辉, 曹宇超, 林培群. 基于融合免疫优化和遗传算法的多应急物资中心选址与调度[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 1-13.
[8] 包剑飞, 张杜鹃. 旅游产业与区域经济耦合协调度研究——以长江三角洲城市群为例[J]. 广西师范大学学报(自然科学版), 2020, 38(3): 117-127.
[9] 叶青, 黄强, 聂斌, 李欢. 一种自适应的高维离群点识别方法[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 107-114.
[10] 许伦辉,尹诗德,刘易家. 基于模拟退火的自适应布谷鸟算法求解公交调度问题[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 1-7.
[11] 梁晓萍,罗晓曙. 基于遗传自适应的维纳滤波图像去模糊算法[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 17-23.
[12] 周秀丹, 胡志华, 魏晨. 自动化集装箱码头成组直接中转的岸桥作业调度[J]. 广西师范大学学报(自然科学版), 2016, 34(2): 81-89.
[13] 刘伟铭, 李荣荣, 王超, 黄玲. 高速公路通行卡调拨问题的遗传算法[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 1-8.
[14] 刘宏, 王其涛, 夏未君. 基于量子遗传算法的WSN三维定位方法[J]. 广西师范大学学报(自然科学版), 2015, 33(4): 49-54.
[15] 乐美龙, 高金敏. 轮辐式航线网络下机型分配与舱位控制的协同优化研究[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 33-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵洁, 宋爽, 武斌. 图像USM锐化取证与反取证技术综述[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 1 -16 .
[2] 艾聪聪, 龚国利, 焦小雨, 田露, 盖中朝, 缑敬轩, 李慧. 毕赤酵母作为基础研究的新兴模式生物研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 17 -26 .
[3] 翟言豪, 王燕舞, 李强, 李景坤. 基于CiteSpace的三维荧光光谱技术对内陆水体中溶解性有机质研究的进展[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 34 -46 .
[4] 陈丽, 唐明珠, 郭胜辉. 智能汽车信息物理系统状态估计与执行器攻击重构[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 59 -69 .
[5] 李成乾, 石晨, 邓敏艺. 基于元胞自动机的Brugada综合征患者心电信号研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 86 -98 .
[6] 吕辉, 吕卫峰. 基于改进YOLOv5的眼底出血点检测算法[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 99 -107 .
[7] 易见兵, 彭鑫, 曹锋, 李俊, 谢唯嘉. 多尺度特征融合的点云配准算法研究[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 108 -120 .
[8] 李莉, 李昊泽, 李涛. 基于Raft的多主节点拜占庭容错共识机制[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 121 -130 .
[9] 赵小梅, 丁勇, 王海涛. 基于改进帝王蝶算法的最大似然DOA估计[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 131 -140 .
[10] 朱艳, 蔡静, 龙芳. 逐步Ⅰ型混合截尾下复合Rayleigh分布竞争失效产品部分步加寿命试验的统计分析[J]. 广西师范大学学报(自然科学版), 2024, 42(3): 159 -169 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发