|
广西师范大学学报(自然科学版) ›› 2024, Vol. 42 ›› Issue (4): 51-63.doi: 10.16088/j.issn.1001-6600.2023091602
郑修斌, 陈珺*
ZHENG Xiubin, CHEN Jun*
摘要: 为解决当前光伏电池参数辨识精度低、速度慢、稳定性较差等问题,本文引入Tent混沌映射初始化种群,使初始解尽可能均匀地分布在解空间内;加入Levy飞行策略,更新蜣螂滚球行为时的个体位置,跳出局部最优解,扩大搜索范围;采用自适应t分布和动态选择策略,在更新蜣螂位置时使用以迭代次数为自由度参数的t分布变异算子对进行扰动,增强算法的全局开发能力和局部探索能力,加快收敛速度;提出一种基于蜣螂优化算法的光伏电池参数辨识方法。实验结果表明,对RTC France的单二极管模型、双二极管模型和光伏组件Photowatt-PWP 201模型进行参数辨识,获得的均方根误差分别为0.000 986、0.000 983、0.002 425。本文提出的方法可以更快更精确地辨识出光伏电池参数,且误差小,具有较高的稳定性。
中图分类号: TP18;TM914.4
[1] NAZEERUDDIN M K. In retrospect: Twenty-five years of low-cost solar cells[J]. Nature, 2016, 538(7626): 463-464. DOI: 10.1038/538463a. [2] 王一凡,王辉,李旭阳,等.电氢混合储能微电网容量配置优化的研究综述[J].广西师范大学学报(自然科学版),2022,40(6):18-36.DOI: 10.16088/j.issn.1001-6600.2022011901. [3] 杨悦强,祝龙记.微电网超级电容器混合储能系统控制策略[J].广西师范大学学报(自然科学版),2021,39(2):71-80.DOI: 10.16088/j.issn.1001-6600.2020050301. [4] 周俊宇,邱桂华,陆家比.光伏接入配电网调峰优化调度控制方法研究[J].电子设计工程,2023,31(24):122-126.DOI: 10.14022/j.issn1674-6236.2023.24.026. [5] 菅荣飞,邢关生,李振伟.一种基于双环LADRC的混合储能变换器控制方法[J].电子设计工程,2024,32(12):41-48.DOI: 10.14022/j.issn1674-6236.2024.12.009. [6] 范海花,尚玉玲.基于二维卷积神经网络的模拟电路故障诊断方法[J].桂林电子科技大学学报,2023,43(6):493-500.DOI: 10.16725/j.cnki.cn45-1351/tn.2023.06.008. [7] 谈恩民,李莹.基于SFO优化SELM的模拟电路故障诊断[J].桂林电子科技大学学报,2023,43(6):501-508.DOI: 10.16725/j.cnki.cn45-1351/tn.2023.06.001. [8] 王一鸣,许颇,张凌翔,等.基于SSA-SVM的光伏阵列故障诊断模型[J].电子设计工程,2024,32(13):46-49.DOI: 10.14022/j.issn1674-6236.2024.13.010. [9] LUO J K, HE F Z, GAO X X. An enhanced grey wolf optimizer with fusion strategies for identifying the parameters of photovoltaic models[J]. Integrated Computer-Aided Engineering, 2023, 30(1): 89-104. DOI: 10.3233/ICA-220693. [10] CHEN H L, JIAO S, HEIDARI A A, et al. An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models[J]. Energy Conversion and Management, 2019, 195: 927-942. DOI: 10.1016/j.enconman.2019.05.057. [11] YE X J, LIU W, LI H, et al. Modified whale optimization algorithm for solar cell and PV module parameter identification[J]. Complexity, 2021, 2021: 8878686. DOI: 10.1155/2021/8878686. [12] HUANG Z Y, CHEN L M, LI M, et al. A multiple learning moth flame optimization algorithm with probability-based chaotic strategy for the parameters estimation of photovoltaic models[J]. Journal of Renewable and Sustainable Energy, 2021, 13(4): 043502. DOI: 10.1063/5.0048961. [13] XUE J K, SHEN B. Dung beetle optimizer: a new meta-heuristic algorithm for global optimization[J]. The Journal of Supercomputing, 2023, 79(7): 7305-7336. DOI: 10.1007/s11227-022-04959-6. [14] ZHANG R Z, ZHU Y J. Predicting the mechanical properties of heat-treated woods using optimization-algorithm-based BPNN[J]. Forests, 2023, 14(5): 935. DOI: 10.3390/f14050935. [15] HU T Y, ZHANG H, ZHOU J T. Prediction of the debonding failure of beams strengthened with FRP through machine learning models[J]. Buildings, 2023, 13(3): 608. DOI: 10.3390/buildings13030608. [16] LING G B, WANG Z W, SHI Y K, et al. Membrane fouling prediction based on Tent-SSA-BP[J]. Membranes, 2022, 12(7): 691. DOI: 10.3390/membranes12070691. [17] 杨宇伦,凌铭.基于改进鸡群优化算法的质子交换膜燃料电池模型参数辨识[J].太阳能学报,2023,44(2):269-278.DOI: 10.19912/j.0254-0096.tynxb.2021-1138. [18] YANG X X, LIU J, LIU Y, et al. A novel adaptive sparrow search algorithm based on chaotic mapping and T-distribution mutation[J]. Applied Sciences, 2021, 11(23): 11192. DOI: 10.3390/app112311192. [19] 吴忠强,谢宗奎,刘重阳,等.基于混沌搜索的改进狮群算法及其在光伏电池参数辨识中的应用[J].计量学报,2021,42(4):415-423.DOI: 10.3969/j.issn.1000-1158.2021.04.03. [20] HOUSSEIN E H, NAGEH G, ABD ELAZIZ M, et al. An efficient Equilibrium Optimizer for parameters identification of photovoltaic modules[J]. PeerJ. Computer Science, 2021, 7: e708. DOI: 10.7717/peerj-cs.708. [21] ADEDIPUPO O O, AYODELE A A, ABIDEEN L T, et al. Detection of appropriate model for Nigeria population growth using root mean square error (RMSE)[J]. International Journal of Systems Science and Applied Mathematics, 2022, 7(3): 46-51. DOI: 10.11648/j.ijssam.20220703.11. [22] LI Y C, HAN M X, GUO Q L. Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization[J]. KSCE Journal of Civil Engineering, 2020, 24(12): 3703-3713. DOI: 10.1007/s12205-020-0504-5. [23] GOWRI V, BARANIDHARAN B. An energy efficient and secure model using chaotic levy flight deep Q-learning in healthcare system[J]. Sustainable Computing: Informatics and Systems, 2023, 39: 100894. DOI: 10.1016/j.suscom.2023.100894. [24] 胡竞杰,储昭碧,郭愉乐,等.基于自适应t分布与动态权重的樽海鞘群算法[J].计算机应用研究,2023,40(7):2068-2074.DOI: 10.19734/j.issn.1001-3695.2022.11.0628. [25] 沙梦洲,沈韬,曾凯,等.融合深浅特征和动态选择机制的行人检测研究[J].数据采集与处理,2023,38(1):162-173.DOI: 10.16337/j.1004-9037.2023.01.014. [26] XU S H, WANG Y. Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm[J]. Energy Conversion and Management, 2017, 144: 53-68. DOI: 10.1016/j.enconman.2017.04.042. |
[1] | 赵中华, 晏晓锋, 童有为. 基于自适应渐消扩展卡尔曼滤波的锂离子电池SOC估计[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 58-66. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |