|
广西师范大学学报(自然科学版) ›› 2022, Vol. 40 ›› Issue (5): 150-159.doi: 10.16088/j.issn.1001-6600.2022021101
张军舰*
ZHANG Junjian*
摘要: 非参数似然方法是在参数似然方法基础上发展的一种非参数方法,具有与传统似然方法类似的许多优良性质,特别是其中的经验似然方法,得到许多学者的重视和研究,是目前统计学的一个重要研究方向。本文在介绍非参数似然方法相关思想基础上,结合团队研究工作,主要从估计、检验和复杂数据应用等方面分别对其研究进展进行较系统地综述,分析相关研究思路和研究内容,给出一些主要结论和研究的侧重点。
中图分类号:
[1]OWEN A B. Empirical likelihood[M]. London: Chapman and Hall, 2001. [2]XUE L, ZHU L. Empirical likelihood in nonparametric and semiparametric models[M]. Beijing: Science Press, 2010. [3]ZHOU M. Empirical likelihood method in survival analysis[M]. Boca Raton: CRC Press, 2016. [4]OWEN A B. Empirical likelihood ratio confidence intervals for a single functional[J]. Biometrika, 1988, 75(2): 237-249. [5]OWEN A B. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 1990, 18(1): 90-120. [6]QIN J, LAWLESS J. Empirical likelihood and general estimating equations[J]. The Annals of Statistics, 1994, 22(1): 300-325. [7]OWEN A B. Empirical likelihood for linear models[J]. The Annals of Statistics, 1991, 19(4): 1725-1747. [8]CHEN S X. Empirical likelihood confidence intervals for nonparametric density estimation[J]. Biometrika, 1996, 83(2): 329-341. [9]CHEN S X, QIN Y S. Empirical likelihood confidence intervals for local linear smoothers[J]. Biometrika, 2000, 87(4): 946-953. [10]WANG Q H, JING B Y. Empirical likelihood for partially linear models with fixed design[J]. Statistics & Probability Letters, 1999, 41(4): 425-433. [11]秦永松. 部分线性模型参数的经验似然比置信域[J]. 应用概率统计. 1999, 15(4): 363-369. [12]SHI J, LAU T S. Empirical likelihood for partially linear models[J]. Journal of Multivariate Analysis, 2000, 72(1): 132-148. [13]CHEN J, QIN J. Empirical likelihood estimation for finite populations and the effective usage of auxiliary information[J]. Biometrika, 1993, 80(1): 107-116. [14]ZHONG B, RAO J N K. Empirical likelihood inference under stratified random sampling using auxiliary population information[J]. Biometrika, 2000, 87(4): 929-938. [15]CHEN J H, WU C B. Estimation of distribution function and quantiles using the model calibrated pseudo empirical likelihood method[J]. Statistica Sinica, 2002, 12(4): 1223-1239. [16]KITAMURA Y. Empirical likelihood methods in econometrics: theory and practice[J]. Cowles Foundation Discussion Paper, 2006: 1569. [17]KITAMURA Y. Empirical likelihood methods with weakly dependent processes[J]. The Annals of Statistics, 1997, 25(5): 2084-2102. [18]张军舰, 王成名, 王炜忻. 相依样本下的经验似然比置信区间[J]. 高校应用数学学报, 1999, 14A(1): 63-72. [19]ZHANG J J. Empirical likelihood for NA series[J]. Statistics & Probability Letters, 2006, 76(2): 153-160. [20]ZHANG J J. Empirical likelihood ratio confidence interval for positively associated series[J]. Acta Mathematicae Applicatae Sinica, 2007, 23(2): 245-254. [21]TSAO M. Bounds on coverage probabilities of the empirical likelihood ratio confidence regions[J]. The Annals of Statistics, 2004, 32(3): 1215-1221. [22]茆诗松, 罗旭. 可加模型中参数的经验欧氏似然估计[J]. 应用概率统计, 1996, 12(4): 383-392. [23]张玉芳. 经验Lq似然[D]. 桂林:广西师范大学, 2012. [24]黄锦联. 二分类Logistic回归模型的Lq似然估计[D]. 桂林:广西师范大学, 2013. [25]罗巧玲. 纵向数据单指标模型的经验Lq似然方法[D]. 桂林:广西师范大学, 2014. [26]FERRARI D, YANG Y. Maximum Lq-likelihood estimation[J]. The Annals of Statistics, 2010, 38(2): 753-783. [27]BAGGERLY K A. Studentized empirical likelihood and maximum entropy[R]. Technical Report, Department of Statistics, Rice University, 1999. [28]BARTOLUCCI F. A penalized version of the empirical likelihood ratio for the population mean[J]. Statistics & Probability Letters, 2007, 77(1): 104-110. [29]李吉妮. 单指标模型的高维惩罚经验似然[D]. 桂林:广西师范大学, 2014. [30]CHEN J H, VARIYATH A M, ABRAHAM B. Adjusted empirical likelihood and its properties[J]. Journal of Computational and Graphical Statistics, 2008, 17(2): 426-443. [31]VARIYATH A M, CHEN J H, ABRAHAM B. Empirical likelihood based variable selection[J]. Journal of Statistical Planning & Inference, 2010, 140(4): 971-981. [32]EMERSON S C, OWEN A B. Calibration of the empirical likelihood method for a vector mean[J]. Electronic Journal of Statistics. 2009, 3: 1161-1192. [33]申群海, 黄运生, 张军舰. 平衡增加的经验欧氏似然[J]. 应用概率统计, 2014, 30(5): 527-536. [34]胡志明. 调整经验欧氏似然及其性质[D]. 桂林:广西师范大学, 2011. [35]胡志明,晏振,张军舰. 调整经验欧氏似然及其性质[J]. 应用数学,2017, 30(2): 299-312. [36]LAZAR N A. Bayesian empirical likelihood[J]. Biometrika, 2003, 90(2): 319-326. [37]YANG Y W, HE X M. Bayeian empirical likelihood for quantile regression[J]. The Annals of Statistics, 2012, 40(2): 1102-1131. [38]WU C B, Rao J N K. Bayesian pseudo-empirical-likelihood intervals for complex surveys[J]. Journal of the Royal Statistical Society(B), 2010, 72(4): 533-544. [39]赖廷煜. VaR和ES的Bayes经验似然估计[D]. 桂林:广西师范大学, 2015. [40]张军舰,赖廷煜,杨晓伟. VaR 和ES 的贝叶斯经验似然估计[J]. 广西师范大学学报(自然科学版),2016, 34(4): 38-45. [41]张军舰. 广义非参数似然比拟合优度检验[D]. 北京: 中国科学院数学与系统科学研究院, 2006. [42]张军舰. 非参数似然比拟合优度检验[D]. 北京: 北京工业大学, 2008. [43]BERK R H, JONES D H. Goodness-of-fit statistics that dominate the Kolmogorov statistics[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1979, 47: 47-59. [44]EINMAHL J H J, MCKEAGUE I W. Empirical likelihood based hypothesis testing[J]. Bernoulli, 2003, 9(2): 267-290. [45]JAGER L, WELLNER J A. A new goodness of fit test: the reversed Berk-Jones statistic[R]. Technical Report 443, Department of Statistics, University of Washington, 2004. [46]JAGER L, WELLNER J A. Goodness-of-fit test via phi-divergence[J]. The Annals of Statistics, 2007, 35(5): 2018-2053. [47]ZHANG J. Powerful goodness-of-fit tests based on the likelihood ratio[J]. Journal of the Royal Statistical Society (B), 2002, 64(2): 281-294. [48]杨振海, 程维虎, 张军舰. 拟合优度检验[M]. 北京: 科学出版社, 2011. [49]李海锋. 最小非参似然比拟合优度检验[D]. 桂林:广西师范大学,2010. [50]CRESSIE N A C, READ T R C. Multinominal goodness-of-fit tests[J]. Journal of the Royal Statistical Society (B), 1984, 46(3): 440-464. [51]OWEN A B. Nonparametric likelihood confidence bands for a distribution function[J]. Publications of the American Statistical Association, 1995, 90(430): 516-521. [52]张军舰, 黄运生. 复合零假设下的修正Berk-Jones检验[J]. 应用数学, 2010, 23(1): 27-31. [53]张军舰, 李国英, 赵志源.一类上界型拟合优度检验统计量的精确分布[J]. 应用概率统计, 2009, 25(4): 421-432. [54]NOE M. The calculation of distributions of two-sided Kolmogorov-Smirnov type statistics[J]. Annals of Mathematical Statistics,1972, 43: 58-64. [55]张军舰, 李国英. 上界型拟合优度检验[J]. 数学物理学报, 2010,30A(2): 344-357. [56]ZHANG J J, LI G. Integral-type tests for goodness of fit[J]. Journal of Systems Science and Complexity, 2010, 23(4): 784-795. [57]SHORACK G R, WELLNER J A. Empirical processes with applications to statistics[M]. New York:John Wiley & Sons, 1986. [58]詹欢. 欧氏似然拟合优度检验[D]. 桂林:广西师范大学,2012. [59]张军舰, 詹欢,晏振. 基于经验欧氏似然的拟合优度检验[J]. 广西师范大学学报(自然科学版),2012, 30(3): 30-35. [60]张新成, 张军舰, 詹欢. 基于垂直密度表示的经验欧氏拟合优度检验[J]. 广西师范大学学报(自然科学版), 2013, 31(4): 60-65. [61]李国英. 关于高维、相依和不完全数据的统计分析[J]. 数学进展, 2002, 31(3): 193-199. [62]LIN L, ZHANG R C. Blockwise empirical Euclidean likelihood for weakly dependent processes[J]. Statistics & Probability Letters, 2001, 53(2): 143-152. [63]BANDYOPADHYAY S, LAHIRI S N, NORDMAN D J. A frequency domain empirical likelihood method for irregularly spaced spatial data[J]. The Annals of Statistics, 2015, 43(2): 519-545. [64]CHENG J, PENG L, ZHAO Y. Empirical likelihood based confidence intervals for copulas[J]. Journal of Multivariate Analysis, 2009, 100(1): 137-151. [65]胡小凤. Copula的经验欧氏似然估计[D]. 桂林:广西师范大学,2013. [66]QIN Y S, LEI Q Z. Empirical likelihood for linear models under linear process errors[J]. Communications in Statistics-Theory and Methods, 2015, 44: 3218-3233. [67]LI Y H, QIN Y S, LEI Q Z. Empirical likelihood for quantiles under associated samples[J]. Acta Mathematicae Applicatae Sinica (English Series), 2015, 31(1): 71-80. [68]LEI Q Z, QIN Y S. Confidence intervals for probability density functions under strong mixing samples[J]. Journal of Nonparametric Statistics, 2015,27(2): 181-193. [69]LEI Q Z, QIN Y S. Empirical likelihood for partially linear models under negatively associated errors[J]. Journal of Systems Science and Complexity, 2016, 29: 1145-1159. [70]LI Y H, QIN Y S, LEI Q Z, et al. Quantile estimation with auxiliary information under positively associated samples[J]. Acta Mathematica Scientia, 2016, 36(2):453-468. [71]LI Y H, QIN Y S, LI Y. Empirical likelihood for nonparametric regression models with spatial autoregressive errors[J]. Journal of the Korean Statistical Society, 2020, 50: 447-478. [72]李玲玲. 高维线性模型的变量选择[D]. 桂林:广西师范大学, 2010. [73]田镇滔. 超高维删失数据的条件分位数特征筛选[D]. 桂林:广西师范大学, 2021. [74]田镇滔, 张军舰. 基于分位数方法的超高维删失数据的特征筛选[J]. 广西师范大学学报(自然科学版), 2021, 39(6):99-111. [75]QIN Y S, LI Y H. Empirical likelihood for partially linear models with missing responses: the fixed design case[J]. Journal of Nonparametric Statistics, 2011, 23(1/2): 497-511. [76]唐美燕. 四舍五入数据对统计推断的影响分析[D]. 桂林:广西师范大学, 2011. [77]吕婷. 舍入数据的经验似然方法[D]. 桂林:广西师范大学, 2012. [78]何伦春. 基于舍入数据的经验欧氏似然估计[D]. 桂林:广西师范大学, 2013. [79]李自军. 离散分布分位数的经验欧氏似然估计[D]. 桂林:广西师范大学, 2013. [80]MOLANES E M L, VAN KEILEGOM I, VERAVERBEBK N. Empirical likelihood for non-smooth criterion functions[J]. Scandinavian Journal of Statistics, 2009, 36(3): 413-432. [81]晏振. VaR和ES的调整经验似然估计[D]. 桂林: 广西师范大学, 2012. [82]YAN Z, ZHANG J J. Adjusted empirical likelihood for value at risk and expected shortfall[J]. Communications in Statistics-Theory and Methods, 2017, 46(5): 2580-2591. [83]易家英. 具有测量误差的纵向部分线性模型的经验欧氏似然方法[D]. 桂林:广西师范大学, 2014. [84]马岱君. 半参数位置偏移混合模型的最小似然距离估计[D]. 桂林:广西师范大学, 2020. [85]彭博. 基于平滑经验欧氏似然的分位回归分布式估计[D]. 桂林:广西师范大学, 2021. [86]陈希孺.变点统计分析简介[J]. 数理统计与管理, 1991, 1: 55-88. [87]CSÖGO RHORVÖ TH L. Limit theorem in change-point analysis[M]. New York: John Wiley & Sons, 1997. [88]ZOU C L, LIU Y K, PENG Q, WANG Z J. Empirical likelihood ratio test for the change-point problem[J]. Statistics & Probability Letters, 2007, 77: 374-382. [89]SHEN G. On empirical likelihood inference of a change-point[J]. Statistics & Probability Letters, 2013, 83: 1662-1668. [90]ZOU C L, YIN G, FENG L, at al. Nonparametric maximum likelihood approach to multiple change-point problems[J]. The Annals of Statistics, 2014, 42(3): 970-1002. [91]GAMAGE R D P, NING W. Empirical likelihood for change point detection in autoregressive models[EB/OL]. (2017-11-27)[2022-02-11]. https:∥arXiv:1711.09533vl. [92]覃志俭. 基于修正BJ方法的多变点检测研究[D]. 桂林:广西师范大学, 2016. [93]杨晓伟. 混合回归模型的变点检测[D]. 桂林:广西师范大学, 2017 [94]卢振法. 基于自适应LASSO的均值变点检测[D]. 桂林:广西师范大学, 2018 [95]黄新程. 均值变点的两阶段估计[D]. 桂林:广西师范大学, 2019 [96]李智航. 基于经验欧氏似然的变点检测[D]. 桂林:广西师范大学, 2020 [97]黄雄琪. 混合模型实时变点的期望分位数检测[D]. 桂林:广西师范大学, 2021 [98]张军舰, 李智航. 基于经验欧氏似然的均值变点检测[J]. 应用概率统计, 2021, 37(1):47-58. |
[1] | 秦永松, 雷庆祝. 空间计量经济模型的经验似然研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 138-149. |
[2] | 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1-21. |
[3] | 翁烨, 邵德盛, 甘淑. 等式约束病态最小二乘的主成分Liu估计解法[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 115-125. |
[4] | 李永杰, 周桂红, 刘博. 基于YOLOv3模型的人脸检测与头部姿态估计融合算法[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 95-103. |
[5] | 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30-42. |
[6] | 陈钟秀, 张兴发, 熊强, 宋泽芳. 非对称DAR模型的估计与检验[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 68-81. |
[7] | 孙烨, 蒋京京, 王纯杰. 广义极值回归模型下现状数据的贝叶斯估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 82-90. |
[8] | 贺建风, 石立. 大数据情境下基于切片逆回归的抽样方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 91-99. |
[9] | 刘宇, 周稳, 李霓. 复发事件数据在含治愈个体的半参数比率模型下的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 139-149. |
[10] | 颜海波, 邓罡, 姜云卢. 基于MRCD估计的多元线性回归模型的稳健估计[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 175-186. |
[11] | 梁鑫, 陈小玲, 张兴发, 李元. 一类带有GARCH类误差项的自回归滑动平均模型[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 195-205. |
[12] | 武康康, 朱旭飞, 陆叶, 周鹏, 董翠, 戴沁璇, 周闰昌. 基于最小二乘法的LS-FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 89-99. |
[13] | 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68-78. |
[14] | 王瑞, 宋树祥, 夏海英. 融合阻抗模型与扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 1-10. |
[15] | 李友邦, 农娟丽, 杨婉琳, 赵佳佳, 朱琪琪. 弄岗同域分布赤腹松鼠和红颊长吻松鼠活动节律研究[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 71-78. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |