广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (2): 175-189.doi: 10.16088/j.issn.1001-6600.2021111702

• 研究论文 • 上一篇    下一篇

基于高通量测序技术研究环境微生物群落结构特征

肖飞1,2, 丁旭升1, 樊培培1, 王维红1*   

  1. 1.新疆农业大学 水利与土木工程学院,新疆 乌鲁木齐 830052;
    2.塔里木大学 水利与建筑工程学院,新疆 阿拉尔 843300
  • 收稿日期:2021-11-17 修回日期:2022-01-12 出版日期:2023-03-25 发布日期:2023-04-25
  • 通讯作者: 王维红(1967—),女,新疆奇台人,新疆农业大学教授。E-mail:2209319288@qq.com
  • 基金资助:
    国家自然科学基金(51968071)

Structural Characteristics of Environmental Microbial Community Studied by High-throughput Sequencing Technology

XIAO Fei1,2, DING Xusheng1, FAN Peipei1, WANG Weihong1*   

  1. 1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi Xinjiang 830052, China;
    2. College of Water Resources and Architectural Engineering, Tarim University, Aral Xinjiang 843300, China
  • Received:2021-11-17 Revised:2022-01-12 Online:2023-03-25 Published:2023-04-25

摘要: 采用高通量测序技术对序批式反应器(R1、R2处理)中微生物群落结构的演变及多样性进行分析,同时对细菌群落与人工模拟番茄酱废水水质相关性进行分析,对微生物酶进行预测。结果表明:微生物菌群在门、纲和属水平上存在显著差异,其中门类水平上,Proteobacteria(变形菌门)和Bacteroidetes(拟杆菌门)为优势菌门;纲水平上,Betaproteobacteria(β-变形菌纲)、Alphaproteobacteria(α-变形杆菌纲)和Bacteroidia(拟杆菌纲)为优势菌纲;属水平上,Zoogloea(动胶菌属)和Flavobacterium(黄杆菌属)为优势菌属。在颗粒形成初期至稳定期,R1、R2中Proteobacteria、Bacteroidetes、Betaproteobacteria、Alphaproteobacteria、Bacteroidia、ZoogloeaFlavobacterium丰度变化分别为1.75%、-7.20%、35.49%、0.12%、-15.23%、-3.11%和-5.23%;1.78%、-2.00%、33.11%、-0.54%、-14.80%、-2.87%和6.13%,各处理的丰度变化较小,丰度差异见于Alphaproteobacteria、Bacteroidia和Flavobacterium。相关性分析表明,Sphingobacteriia和Negativicutes与NH3-N和PO3-4-P、Flavobacteria与COD呈显著负相关,Gammaproteobacteria、Clostridia与COD和NH3-N呈显著正相关,Betaproteobacteria与PO3-4-P呈显著正相关。Proteobacteria具有脱氮作用,Bacteroidetes与EPS的降解等有关,Acidobacteria对絮体污泥的初始凝聚具有积极作用。絮体期的污泥还存在Anaerolineae,Anaerolineae有利于絮体污泥的沉降。Delta-9 desaturase(硬脂酰辅酶A脱氢酶,ó-9脱氢酶)和transport system permease protein(系统通透酶蛋白)丰度较高,lactocepin(乳酸菌素)、linoleoyl-CoA desaturase(亚油酰辅酶A脱氢酶)和ribosomal protein S6 modification protein(核糖体蛋白S6修饰蛋白)变化最显著,但整个体系中的微生物酶保持有类似的功能。

关键词: 好氧颗粒污泥, 高通量技术, 微生物菌群, 番茄酱废水, 微生物酶

Abstract: High-throughput sequencing technology was used to analyze the evolution and diversity of microbial community structure in sequence batch reactors (R1, R2), the correlation between bacterial community and tomato sauce wastewater quality and the prediction of microbial enzymes. The results showed that there were significant differences in the level of phylum, class and genus. Proteobacteria and Bacteroidetes were the dominant phylum at the level of phylum. At class level, Betaproteobacteria, Alphaproteobacteria and Bacteroidia were the dominant bacteria. At the genus level, Zoogloea and Flavobacterium were the dominant genera. From the initial stage of particle formation to the stable stage, the abundances of Proteobacteria, Bacteroidetes, Betaproteobacteria, Alphaproteobacteria, Bacteroidia, Zoogloea and Flavobacterium in R1 and R2 were 1.75%, -7.20%, 35.49%, 0.12%, -15.23%, -3.11% and -5.23% respectively. The abundance of 1.78%, -2.00%, 33.11%, -0.54%, -14.80%, -2.87% and 6.13% showed little variation. But the differences in abundance was found in Alphaproteobacteria, Bacteroidia and Flavobacterium. Correlation analysis showed that Sphingobacteriia and Negativicutes had a significant negative correlation with NH3-N and PO3-4-P, Flavobacteria had a significant negative correlation with COD. Gammaproteobacteria and Clostridia were significantly positively correlated with COD and NH3-N, while Betaproteobacteria was significantly positively correlated with PO3-4-P. Proteobacteria has the effect of nitrogen removal, Bacteroidetes is related to the degradation of EPS, Acidobacteria has a positive effect on the initial coagulation of flocs sludge. Anaerolineae also exists in the sludge at the floc stage, and Anaerolineae is beneficial to the settlement of the floc sludge. Among them delta-9 desaturase (stearoyl-CoA dehydrogenase (ó-9 dehydrogenase) and transport system permease protein (system permease protein) are more abundant, and lactocepin (lactocerin), linoleoyl-CoA desaturase (sub oleoyl-CoA dehydrogenase) and ribosomal protein S6 modification protein (ribosomal protein S6 modification protein) changed most significantly, but microbial enzymes throughout the system maintained similar functions.

Key words: aerobic granular sludge, high-throughput technology, microbial flora, tomato paste wastewater, microbial enzyme

中图分类号: 

  • X703
[1] 支丽玲. 群体感应及猝灭效应对好氧颗粒污泥系统的影响研究[D].无锡:江南大学,2020.
[2] 肖飞,丁旭升,王维红.基于文献计量学分析的全球好氧颗粒污泥研究进展[J].广西师范大学学报(自然科学版),2022,40(2):1-4.DOI: 10.16088/j.issn.1001-6600.2021041501.
[3] PRONK M, DE KREUK M K, DE BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84(1):207-217.DOI: 10.1016/j.watres.2015.07.011.
[4] 王维红,包文婷,王燕杉.粒径对番茄酱废水好氧颗粒污泥性能的影响[J].精细化工,2021,38(2):380-386.DOI: 10.13550/j.jxhg.20200722.
[5] HE Q L, ZHOU J, WANG H Y, et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor[J]. Bioresource Technology, 2016, 214(3):1-8.DOI: 10.1016/j.biortech.2016.04.088.
[6] LIU L, YOU Q Y, GIBSON V, et al. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Frontiers of Environmental Science & Engineering, 2015, 9(6):1139-1148.DOI: 10.1007/s11783-015-0823-9.
[7] LIU X D, CHEN Y, ZHANG X, et al. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater[J]. Journal of Hazardous Materials, 2015, 295:153-160.DOI: 10.1016/j.jhazmat.2015.04.025.
[8] 刘前进,刘立凡.苯酚溶液对好氧颗粒污泥储存稳定性的影响[J].中国环境科学,2021,41(12):5620-5626.DOI: 10.19674/j.cnki.issn1000-6923.20210223.022.
[9] 李黔花,李志华,岳秀,等.好氧颗粒污泥处理印染废水的效能及其微生物特征[J].工业水处理,2020,40(3):43-48.
[10] YUAN Q, GONG H, XI H, et al. Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate[J]. Journal of Environmental Sciences, 2019,84:144-154.
[11] 唐琳钦,王安柳,宿程远,等.不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J].广西师范大学学报(自然科学版),2021,39(2):144-153. DOI: 10.16088/j.issn.1001-6600.2020061301.
[12] 张翠雅. 好氧颗粒污泥形成过程和稳定性控制优化研究[D].大连:大连理工大学,2016.
[13] 毛世超,王燕萍,陈芳媛.低碳氮比废水好氧颗粒污泥系统稳定性及微生物种群多样性研究[J].环境化学,2021,40(3):904-913.
[14] XIN X, QIN J W. Rapid start-up of partial nitritation in aerobic granular sludge bioreactor and the analysis of bacterial community dynamics[J]. Bioprocess and Biosystems Engineering,2019, 42(12):1973-1981.DOI: 10.1007/s00449-019-02190-x.
[15] 国家环境保护总局,《水和废水监测分析方法》编委会. 水和废水监测分析方法[M].第4版. 北京:中国环境科学出版社,2002:425-426.
[16] 黄薇, 刘兰英,吴妙鸿,等.养殖废水处理系统中微生物菌群结构及动态变化[J]. 中国环境科学,2019,39(2):839-848.DOI: 10.19674/j.cnki.issn1000-6923.2019.0103.
[17] WANG L, ZHENG P, XING Y J, et al. Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms[J]. Bioresource Technology, 2014, 157:240-246.DOI: 10.1016/j.biortech.2014.01.116.
[18] DENG S, WANG L X, SU H J. Role and influence of extracellular polymeric substances on the preparation of aerobic granular sludge[J]. Journal of Environmental Management, 2016, 173: 49-54. DOI: 10.1016/j.jenvman.2016.03.008.
[19] 唐堂,王硕,王玉莹,等. SBR不同沉降时间的污泥特性研究[J]. 中国给水排水, 2018, 34(3):85-90.DOI: 10.19853/j.zgjsps.1000-4602.2018.03.018.
[20] MA Q, QU Y Y, SHEN W L, et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing[J]. Bioresource Technology, 2015,179: 436-443.DOI: 10.1016/j.biortech.2014.12.041.
[21] 刘宏波,杨昌柱,濮文虹,等.有机负荷对颗粒化SBR反应器的影响研究[J].环境科学,2009, 30(5):1449-1453.DOI: 10.13227/j.hjkx.2009.05.029.
[22] 闫思华,王慧茹,李建设,等.不同药剂处理对番茄连作培养基质微生物群落的影响[J].中国土壤与肥料,2021(4):273-282.
[23] 赵霞. 好氧颗粒污泥系统处理含PPCPs污水的效能及微生物群落演替[D].哈尔滨:哈尔滨工业大学,2015.
[24] 王佳伟,高永青,孙丽欣,等.中试SBR内好氧颗粒污泥培养和微生物群落变化[J].中国给水排水,2019,35(7):1-7,14.DOI: 10.19853/j.zgjsps.1000-4602.2019.07.001.
[25] 冯殿宝. 处理番茄酱加工废水的好氧颗粒污泥快速培养及特性研究[D].乌鲁木齐:新疆农业大学,2018.
[26] 潘江,肖芃颖,姚源,等.连续曝气SBR快速培养AGS及同步脱氮除碳特性分析[J].环境监测管理与技术,2021,33(3):60-63.DOI: 10.19501/j.cnki.1006-2009.2021.03.014.
[27] NIERYCHLO M, MILOBEDZKA A, PETRIGLIERI F, et al.The morphology and metabolic potential of the Chloroflexi in full-scale activated sludge wastewater treatment plants[J].Fems Microbiology Ecology,2019,95(2):228-260.DOI: 10.1093/femsec/fiy228.
[28] 杨丹丹. 好氧颗粒污泥对汽车涂装废水的处理效能及其微生物菌群结构分析[D].合肥:安徽建筑大学,2018.
[29] 肖飞,董文明,王维红.基于活性污泥微生物冻后再生对废水基质降解效能的研究[J].环境监测管理与技术,2021,33(4):57-60. DOI: 10.19501/j.cnki.1006-2009.2021.04.013.
[30] GUIMARÃES L B, MEZZARI M P, DAUDT G C, et al. Microbial pathways of nitrogen removal in aerobic granular sludge treating domestic wastewater[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(7):1756-1765.DOI: 10.1002/jctb.5176.
[31] JAHN L, SARACEVIC E, SVARDAL K, et al. Anaerobic biodegradation and dewaterability of aerobic granular sludge[J]. Journal of Chemical Technology & Biotechnology, 2019,94(9):2908-2916.DOI: 10.1002/jctb.6094.
[32] 王浩宇. 活性污泥膨胀的影响因素与控制研究[D].太原:太原理工大学,2006.
[33] WEISSBRODT D G,NEU T R,KUHLICKE U,et al. Assessment of bacterial and structural dynamics in aerobic granular biofilms[J]. Frontiers Microbiology,2013,4: 175.DOI: 10.3389/fmicb.2013.00175.
[34] SZABÓ E,LIÃBANA R,HERMANSSON M,et al. Microbial population dynamics and ecosystem functions of anoxic/aerobic granular sludge in sequencing batch reactors operated at different organic loading rates[J]. Frontiers Microbiology,2017,8:770.DOI: 10.3389/fmicb.2017.00770.
[35] JIANG H L,TAY J H,MASZENAN A M,et al. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation[J]. Applied and Environmental Microbiology,2004,70(11): 6767-6775.DOI: 10.1128/AEM.70.11.6767-6775.2004.
[36] 罗应东. 污泥颗粒化过程及曝气条件对好氧颗粒的影响研究[D].武汉:华中科技大学,2011.
[37] 周俊. 反硝化除磷颗粒污泥反应器快速启动及其功能菌群作用机制研究[D].武汉:武汉大学,2016.
[38] OEHMEN A, LEMOS P C, CARVALHO G, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water Research, 2007, 41(11):2271-2300.DOI: 10.1016/j.watres.2007.02.030.
[39] HESSELMANN R,WERLEN C, HAHN D, et al. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge[J]. Systematic and Applied Microbiology, 1999, 22(3):454-465.DOI: 10.1016/S0723-2020(99)80055-1.
[40] 温树梅,李春,付伟超,等.AAC反应器好氧菌的筛选及菌株配伍性能的比较[J].化工学报,2009,60(8):2067-2073.
[41] 敬双怡,李岩,于玲红,等.SMBBR工艺处理生活污水脱氮效能及其微生物多样性[J].应用与环境生物学报,2019,25(1):206-214. DOI: 10.19675/j.cnki.1006-687x.2018.04039.
[42] 郭承元,操家顺,王耀增.混合碳源的好氧颗粒污泥培养及微生物特性研究[J].中国给水排水,2012,28(21):75-78.
[43] 王杰,彭永臻,杨雄,等.不同碳源种类对好氧颗粒污泥合成PHA的影响[J].中国环境科学,2015,35(8):2360-2366.
[44] XUE Y Q,GUO J B,LIAN J, et al. Effects of a higher hydraulic shear force on denitrification granulation in upflow anoxic sludge blanket reactors[J]. Biochemical Engineering Journal, 2016, 105:136-143.DOI: 10.1016/j.bej.2015.09.010.
[45] 曲新月,范文雯,袁林江,等.水平搅拌下低高径比SBR中好氧活性污泥的颗粒化[J].中国环境科学,2018,38(9):3358-3366.DOI: 10.19674/j.cnki.issn1000-6923.2018.0362.
[46] 王燕杉.好氧颗粒污泥处理番茄酱生产废水及微生物群落演替[D].乌鲁木齐:新疆农业大学,2018.
[47] 冯殿宝,王维红,王燕杉,等.以黏土为载体的好氧颗粒污泥培养及其对番茄废水的处理[J].应用与环境生物学报,2019,25(1):199-205.DOI: 10.19675/j.cnki.1006-687x.2018.03033.
[48] 范文雯. 好氧活性污泥圆柱形反应器流态的CFD解析及污泥颗粒化的模型预测[D].西安:西安建筑科技大学,2018.
[1] 陈庆峰, 余哲, 黄诗琪, 姚杜旸, 陈威, 王宗平. 菌藻共生好氧颗粒污泥的分形特征研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 163-172.
[2] 肖飞, 丁旭升, 王维红. 基于文献计量学分析的好氧颗粒污泥研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 1-14.
[3] 唐琳钦, 王安柳, 宿程远, 邓雪, 赵力剑, 先云川, 陈宇. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周正春. 互补序列研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 1 -16 .
[2] 杨烁祯, 张珑, 王建华, 张恒远. 声音事件检测综述[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 1 -18 .
[3] 杨生龙, 母庆闯, 张志华, 刘葵. 废旧锂离子电池回收利用技术进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 19 -26 .
[4] 李康良, 邱彩雄, 何爽, 黄春华, 伍冠一. 白介素-31参与瘙痒的研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 27 -35 .
[5] 卢许孟, 南新元, 夏斯博. 无模型坐标补偿积分滑模约束的自动驾驶汽车轨迹跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 36 -48 .
[6] 张伟健, 邴其春, 沈富鑫, 胡嫣然, 高鹏. 城市快速路路段行程时间估计方法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 49 -57 .
[7] 杨秀, 韦笃取. 基于单状态变量的永磁同步电机混沌跟踪控制[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 58 -66 .
[8] 赵媛, 宋树祥, 刘振宇, 岑明灿, 蔡超波, 蒋品群. 一种新型电流镜运算跨导放大器的设计[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 67 -75 .
[9] 王鲁娜, 杜洪波, 朱立军. 基于流形正则的堆叠胶囊自编码器优化算法[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 76 -85 .
[10] 赵明, 罗秋莲, 陈蔚萌, 陈嘉妮. 控制时机和力度对传染病传播的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 86 -97 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发