广西师范大学学报(自然科学版) ›› 2021, Vol. 39 ›› Issue (4): 158-169.doi: 10.16088/j.issn.1001-6600.2020092402

• • 上一篇    下一篇

改良过氧化钙对潜育性水稻土有机碳矿化的影响

胡乐宁1,2, 李双莉1,2, 李杨3, 韦奕庄1,2, 周金玲4, 苏以荣4, 邓华1,2*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    2.广西师范大学 环境与资源学院,广西 桂林 541006;
    3.广西壮族自治区环境保护科学研究院,广西 南宁 530022;
    4.中国科学院亚热带农业生态研究所 亚热带农业生态过程重点实验室,湖南 长沙 410125
  • 修回日期:2020-12-15 出版日期:2021-07-25 发布日期:2021-07-23
  • 通讯作者: 邓华(1977—), 女, 湖南永州人, 广西师范大学副教授, 博士。 E-mail: denghua@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(41877035,41671298); 岩溶生态与环境变化研究广西高校重点实验室研究基金(YRHJ15Z017)

Effect of Improved Calcium Peroxide on Organic Carbon Mineralization in Gleyed Paddy Soil

HU Lening1,2, LI Shuangli1,2, LI Yang3, WEI Yizhuang1,2, ZHOU Jinling4, SU Yirong4, DENG Hua1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Guangxi Zhuang Autonomous Region Academy of Environmental Protection Science, Nanning Guangxi 530022, China;
    4. Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha Hunan 410125, China
  • Revised:2020-12-15 Online:2021-07-25 Published:2021-07-23

摘要: 为探究改良过氧化钙(CaO2)在潜育性水稻土有机碳矿化过程中的作用,选取CaO2为原料,利用溶于乙醇的乙基纤维素对其进行包膜,制得造粒过氧化钙(GAO),把GAO和氧化钙(CAO,含CaO质量分数95.0%)、过氧化钙(PAO,含CaO2质量分数75%)3种物质各设置3种不同含氧量浓度(低浓度0.011 g/kg、中浓度0.111 g/kg和高浓度1.111 g/kg),同时设置空白对照(CK),采用室内培养的方法研究分析其对潜育性水稻土有机碳矿化、可溶性有机碳(dissolved organic carbon,DOC)及微生物量碳(microbial biomass carbon,MBC)的影响。结果表明:高浓度含氧量条件下,培养期结束后,PAO、GAO相对CK和CAO而言,抑制了潜育性水稻土CO2的排放,PAO处理土壤CO2累计排放量分别比CK和CAO处理降低了50.86%和46.33%,GAO处理土壤CO2累计排放量分别比CK和CAO处理降低22.49%和15.35%;与CK相比,CAO、PAO、GAO的添加促进了潜育性水稻土CH4的排放,其CH4累计排放量分别是CK处理的2.07倍、1.22倍和1.10倍。与CK处理相比,添加中、高浓度氧化剂显著增加了潜育性水稻土MBC和DOC的含量,且添加GAO使土壤MBC含量的高峰期延后,说明GAO因其特殊包膜,有效降低了氧化剂释氧速度,在培养后期仍可有效释氧。本研究表明改良氧化剂GAO在提高潜育性水稻土微生物活性和促进有机碳周转方面具有较好的应用潜力。

关键词: 潜育性水稻土, 氧化剂, 温室气体, 有机碳, 矿化, 微生物量碳

Abstract: In order to explore the role of modified calcium peroxide (CaO2) in the process of organic carbon mineralization in gleyed paddy soil, CaO2 was selected as raw material and coated with ethyl cellulose dissolved in ethanol to prepare granulated calcium peroxide (GAO), set GAO and calcium oxide (CAO, containing 95.0% of CaO mass fraction), calcium peroxide (PAO, containing 75% of CaO2 mass fraction) 3 substances each with 3 different oxygen content concentrations (low concentration 0.011 g/kg, medium concentration 0.111 g/kg and high concentration 1.111 g/kg). At the same time, no substance was added as a blank control (CK), and the method of indoor cultivation was used to study and analyze its effect on the organic carbon mineralization of cultivable paddy soil, the influence of dissolved organic carbon (DOC) and microbial biomass carbon (MBC). The results showed that under the condition of high oxygen concentration, after the incubation period, PAO and GAO inhibited the CO2 emission from the cultivating paddy soil compared with CK and CAO. The cumulative CO2 emission from the soil treated with PAO were reduced by 50.86% and 46.33% compared with CK and CAO treatments, respectively, the cumulative CO2 emissions of soil treated with GAO were reduced by 22.49% and 15.35% compared with CK and CAO treatments, respectively. Compared with CK, the addition of CAO, PAO, and GAO promoted CH4 emissions from cultivable paddy soil. Its cumulative CH4 emissions are 2.07 times, 1.22 times, and 1.10 times that of CK treatment, respectively. Compared with CK treatment, the addition of medium and high concentrations of oxidants significantly increased the content of MBC and DOC in cultivable paddy soil, and the addition of GAO delayed the peak period of soil MBC content, indicating that GAO is due to its special coating effectively reduces the oxygen release rate of the oxidant, and can still effectively release oxygen in the later stage of the culture. This study shows that the improved oxidant GAO has a good application potential in improving the microbial activity of cultivable paddy soil and promoting the turnover of organic carbon.

Key words: gleyed paddy soil, oxidant, greenhouse gases, organic carbon, mineralization, microbial biomass carbon

中图分类号: 

  • S153.6
[1]BRAMMER H, BRINKMAN R. Surface-water gley soils in Bangladesh: environment, landforms and soil morphology[J]. Geoderma, 1977, 17(2): 91-109. DOI:10.1016/0016-7061(77)90043-X.
[2]LIN Y S, LIN Y W, WANG Y, et al. Relationships between topography and spatial variations in groundwater and soil morphology within the Taoyuan-Hukou Tableland, Northwestern Taiwan[J]. Geomorphology, 2007, 90(1/2): 36-54. DOI:10.1016/j.geomorph.2007.01.013.
[3]侯红乾, 冀建华, 刘秀梅, 等. 土壤改良剂对鄱阳湖区潜育性稻田的改良作用研究[J]. 土壤通报, 2016, 47(6): 1448-1454. DOI:10.19336/j.cnki.trtb.2016.06.25.
[4]YANG Y, WANG Z C, XIE Y Q, et al. Impacts of groundwater depth on regional scale soil gleyization under changing climate in the Poyang Lake Basin, China[J]. Journal of Hydrology, 2019, 568: 501-516. DOI:10.1016/j.jhydrol.2018.11.006.
[5]COUTTS M P. Components of tree stability in Sitka spruce on peaty gley soil[J]. Forestry, 1986, 59(2): 173-197. DOI:10.1093/forestry/59.2.173.
[6]杨钙仁, 童成立, 肖和艾, 等. 水分控制下的湿地沉积物氧化还原电位及其对有机碳矿化的影响[J]. 环境科学, 2009, 30(8): 2381-2386. DOI:10.13227/j.hjkx.2009.08.049.
[7]ALLER R C. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation[J]. Chemical Geology, 1994, 114(3/4): 331-345. DOI: 10.1016/0009-2541(94)90062-0.
[8]LIU Y X, LU H H, YANG S M, et al. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research, 2016, 191: 161-167.DOI: 10.1016/j.fcr.2016.03.003.
[9]余喜初, 李大明, 黄庆海, 等. 过氧化钙及硅钙肥改良潜育化稻田土壤的效果研究[J]. 植物营养与肥料学报, 2015, 21(1): 138-146. DOI:10.11674/zwyf.2015.0115.
[10]于海莲, 胡震. 过氧化钙的常温制备[J]. 四川化工, 2008, 11(5): 1-3.
[11]周金玲, 郑小东, 田应兵, 等. 氧化剂对潜育性稻田土壤微生物生物量及有效养分的影响[J]. 江苏农业科学, 2017, 45(14): 227-231. DOI:10.15889/j.issn.1002-1302.2017.14.060.
[12]周彦波, 王英秀, 周振华, 等. 过氧化钙缓释氧剂的制备及其释氧特性研究[J]. 中国给水排水, 2012, 28(7): 64-67.
[13]董春华, 罗尊长, 苏以荣, 等. 一种以过氧化钙为基质乙基纤维素为包膜的缓释氧化剂及制备方法:CN105925267A[P]. 2016-09-07.
[14]黄媛. 桂西北典型土壤有机碳矿化对碳酸钙、水分及温度的响应[D].桂林:广西师范大学, 2013.
[15]MOORHEAD D L, LASHERMES G, SINSABJulH R L, et al. Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency[J]. Soil Biology and Biochemistry, 2013, 66: 17-19. DOI:10.1016/j.soilbio.2013.06.016.
[16]XU H W, SHAO H B, LU Y. Arbuscular mycorrhiza fungi and related soil microbial activity drive carbon mineralization in the maize rhizosphere[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109476. DOI:10.1016/j.ecoenv.2019.109476.
[17]宋长青, 吴金水, 陆雅海, 等. 中国土壤微生物学研究10年回顾[J]. 地球科学进展, 2013, 28(10): 1087-1105.
[18]杨艳菊, 蔡祖聪, 张金波. 氧气浓度对水稻土N2O排放的影响[J]. 土壤, 2016, 48(3): 539-545. DOI:10.13758/j.cnki.tr.2016.03.019.
[19]鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社,2000.
[20]谭立敏, 彭佩钦, 李科林, 等. 水稻光合同化碳在土壤中的矿化和转化动态[J]. 环境科学, 2014, 35(1): 233-239. DOI:10.13227/j.hjkx.2014.01.034.
[21]林明月, 邓少虹, 苏以荣, 等. 施肥对喀斯特地区植草土壤活性有机碳组分和牧草固碳的影响[J]. 植物营养与肥料学报, 2012, 18(5): 1119-1126.
[22]张影,刘星,任秀娟,等. 秸秆及其生物炭对土壤碳库管理指数及有机碳矿化的影响[J].水土保持学报,2019, 33(3): 153-159,165. DOI:10.13870/j.cnki.stbcxb.2019.03.023.
[23]胡柯鑫, 董春华, 罗尊长, 等.不同释放速率过氧化钙对模拟潜育环境下稻田土壤理化特性的影响[J]. 土壤, 2020, 52(4): 853-861. DOI:10.13758/j.cnki.tr.2020.04.028.
[24]何方杰,韩辉邦,马学谦,等. 隆宝滩保护区不同生态系统CH4和CO2通量差异及其影响因素[J].生态学杂志:2020, 39(9):2821-2831. DOI:10.13292/j.1000-4890.202009.004.
[25]邱虎森, 王翠红, 盛浩. 生物质炭对土壤温室气体排放影响机制探讨[J]. 湖南农业科学, 2012(11): 49-52. DOI:10.16498/j.cnki.hnnykx.2012.11.006.
[26]郭艳亮, 王丹丹, 郑纪勇, 等. 生物炭添加对半干旱地区土壤温室气体排放的影响[J]. 环境科学, 2015, 36(9): 3393-3400. DOI:10.13227/j.hjkx.2015.09.035.
[27]JIAO Z H, HOU A X, SHI Y, et al.Water management influencing methane and nitrous oxide emissions from rice field in relation to soil redox and microbial community[J].Communications in Soil Science and Plant Analysis, 2006, 37(13/14): 1889-1903. DOI: 10.1080/00103620600767124.
[28]冯虎元, 程国栋, 安黎哲. 微生物介导的土壤甲烷循环及全球变化研究[J]. 冰川冻土, 2004, 26(4): 411-419.
[29]彭艳丽, 赵华章, 杨亲正, 等. 微生物及酶固定二氧化碳的研究进展[J]. 化学与生物工程, 2010, 27(7): 10-13.
[30]张静, 周雪飞, 钱雅洁. 过氧化钙在环境修复应用中的研究进展[J]. 环境化学, 2014, 33(2): 321-326. DOI:10.7524/j.issn.0254-6108.2014.02.015.
[31]章明奎, WALELIGN D B, 唐红娟. 生物质炭对土壤有机质活性的影响[J]. 水土保持学报, 2012, 26(2): 127-131, 137. DOI:10.13870/j.cnki.stbcxb.2012.02.034.
[32]刘炳君, 杨扬, 李强, 等. 调节茶园土壤pH对土壤养分、酶活性及微生物数量的影响[J].安徽农业科学, 2011, 39(32): 19822-19824. DOI:10.13989/j.cnki.0517-6611.2011.32.192.
[1] 胡乐宁, 苏以荣, 何寻阳. 桂西北喀斯特典型土壤的大团聚体分级特征研究[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 213-219.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 戴云飞, 祝龙记. 应用于超级电容储能的开关准Z源双向DC/DC变换器研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 11 -19 .
[2] 吕惠炼, 胡维平. 基于端到端深度神经网络的语音情感识别研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 20 -26 .
[3] 胡锦铭, 韦笃取. 不同阶次分数阶永磁同步电机的混合投影同步[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 1 -8 .
[4] 武康康, 周鹏, 陆叶, 蒋丹, 闫江鸿, 钱正成, 龚闯. 基于小批量梯度下降法的FIR滤波器[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 9 -20 .
[5] 刘东, 周莉, 郑晓亮. 基于SA-DBN的超短期电力负荷预测[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 21 -33 .
[6] 张伟彬, 吴军, 易见兵. 基于RFB网络的特征融合管制物品检测算法研究[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 34 -46 .
[7] 王金艳, 胡春, 高健. 一种面向知识编译的OBDD构造方法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 47 -54 .
[8] 逯苗, 何登旭, 曲良东. 非线性参数的精英学习灰狼优化算法[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 55 -67 .
[9] 李莉丽, 张兴发, 李元, 邓春亮. 基于高频数据的日频GARCH模型估计[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 68 -78 .
[10] 李松涛, 李群宏, 张文. 三自由度碰撞振动系统的余维二擦边分岔与混沌控制[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 79 -92 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发