Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 1-7.doi: 10.16088/j.issn.1001-6600.2023032001
MA Qianran, WEI Duqu*
[1] ROBERTS C, LARA J D, HENRIQUEZ-AUBA R, et al. Continuous-time echo state networks for predicting power system dynamics[J]. Electric Power Systems Research, 2022, 212: 108562. DOI: 10.1016/j.epsr.2022.108562. [2] ZHANG G L, ZHONG H W, TAN Z F, et al. Texas electric power crisis of 2021 warns of a new blackout mechanism[J]. CSEE Journal of Power and Energy Systems, 2022, 8(1): 1-9. DOI: 10.17775/CSEEJPES.2021.07720. [3] CARRERAS B A, LYNCH V E, DOBSON I, et al. Critical points and transitions in an electric power transmission model for cascading failure blackouts[J]. Chaos, 2002, 12(4): 985-994. DOI: 10.1063/1.1505810. [4] 胡锦铭,韦笃取.不同阶次分数阶永磁同步电机的混合投影同步[J].广西师范大学学报(自然科学版),2021,39(4):1-8.DOI:10.16088/j.issn.1001-6600.2020070603. [5] 周冬玥,胡福年,陈军.基于复杂网络的电力系统鲁棒性分析[J].电力系统保护与控制,2021,49(1):72-80.DOI:10.19783/j.cnki.pspc.200204. [6] 戴磊,魏海峰,李洋洋,等.基于分岔理论的永磁同步电机有限时间混沌控制[J].控制工程,2022,29(1):27-32.DOI:10.14107/j.cnki.kzgc.20200206. [7] HEMATI N, KWATNY H. Bifurcation of equilibria and chaos in permanent-magnet machines[C]// Proceedings of 32nd IEEE Conference on Decision and Control. Piscataway, NJ: IEEE, 1993: 475-479. DOI: 10.1109/CDC.1993.325102. [8] 李家祥,汪凤翔,柯栋梁,等.基于粒子群算法的永磁同步电机模型预测控制权重系数设计[J].电工技术学报,2021,36(1):50-59,76.DOI:10.19595/j.cnki.1000-6753.tces.200752. [9] 郭士铭,韦笃取.随机扰动下多电机网络混沌振荡的反馈可调节控制[J].振动与冲击,2021,40(13):60-63,72.DOI:10.13465/j.cnki.jvs.2021.13.008. [10] PECHUK V D, KRASNOPOLSKAYA T S, PECHUK E D. Maximum Lyapunov exponent calculation[C]// 14th Chaotic Modeling and Simulation International Conference. Cham: Springer, 2022: 327-335. DOI: 10.1007/978-3-030-96964-6_22. [11] HU Z Q, XU P C, ASHOUR E A, et al. Prediction and construction of drug-polymer binary system thermodynamic phase diagram in amorphous solid dispersions (ASDs)[J]. AAPSPharmSciTech, 2022, 23(6): 169. DOI: 10.1208/s12249-022-02319-4. [12] 张春涛,马千里,彭宏.基于信息熵优化相空间重构参数的混沌时间序列预测[J].物理学报,2010,59(11):7623-7629.DOI:10.7498/aps.59.7623. [13] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558. DOI: 10.1073/pnas.79.8.2554. [14] SAMMUT G, WEBB G I. Encyclopedia of machine learning[M]. New York: Springer, 2010. DOI: 10.1007/978-0-387-30164-8. [15] JAEGER H. The “echo state” approach toanalysing and training recurrent neural networks-with an erratum note: GMD Report 148[R]. Bonn: German National Research Center for Information Technology, 2010: 13. [16] 刘半藤,陈唯,尹则高,等.基于MCP正则化SWESN的时间序列预测方法研究[J].计算机仿真,2022,39(4):307-311.DOI:10.3969/j.issn.1006-9348.2022.04.060. [17] 陈豪昌,韦笃取.基于储备池计算的电机系统混沌预测与同步研究[J].振动与冲击,2021,40(16):199-203.DOI:10.13465/j.cnki.jvs.2021.16.025. [18] 张清勇,常万峰,李昶吾,等.基于IGSA-DESN的短时交通流预测方法[J].武汉理工大学学报,2022,44(7):89-95.DOI:10.3963/j.issn.1671-4431.2022.07.013. [19] 沈富鑫,邴其春,张伟健,等.基于回声状态网络模型的短时交通流混沌预测[J].济南大学学报(自然科学版),2022,36(2):142-147,154.DOI:10.13349/j.cnki.jdxbn.20211011.002. [20] 徐玚,徐晓钟.基于ESN和改进RBFNN的城市燃气负荷预测[J].计算机系统应用,2019,28(3):28-35.DOI:10.15888/j.cnki.csa.006798. [21] 胡锦铭,韦笃取.分数阶永磁同步电机的广义同步研究[J].广西师范大学学报(自然科学版),2020,38(6):14-20.DOI:10.16088/j.issn.1001-6600.2020.06.002. [22] HU W C, ZHANG Y B, MA R C, et al. Synchronization between two linearly coupled reservoir computers[J]. Chaos Solitons & Fractals, 2022, 157: 111882. DOI: 10.1016/j.chaos.2022.111882. [23] 李健康,韦笃取,罗晓曙,等.分布式发电系统与感性负载网络混沌同步控制[J].广西师范大学学报(自然科学版),2019,37(3):33-41.DOI:10.16088/j.issn.1001-6600.2019.03.004. |
[1] | ZHONG Xiaoyun. Mittag-Leffler Projective Synchronization of Fractional Order Newton-Leipnik Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 113-121. |
[2] | RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181. |
[3] | WU Lei, YANG Zhi, ZHANG Lei, BAI Kezhao. Sliding Mode Control for Fractional Chaotic Order Synchronous Reluctance Motor [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 62-70. |
[4] | HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105. |
[5] | WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51. |
[6] | WU Lei, MA Shujing, XIAO Huapeng, TANG Wen. Tracking Control of Synchronous Reluctance Motor Basedon Feedback Linearization Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 10-16. |
[7] | WU Lei,YANG Li,GUO Pengxiao. Feedback Linearization Control of Rucklidge System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 21-27. |
[8] | CHEN Yan-fei, JIA Zhen, DENG Qi-xiang, XIE Meng-shu, YU Xiao-ling. Adaptive Generalized Projective Synchronization for HyperchaoticLiu System and Parameters Identification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 10-14. |
[9] | LI Yong, JIA Zhen. Applications of Discrete Chaotic Systems in Secure Communication [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 15-19. |
[10] | ZHONG Min, TANG Guo-ning. Suppressing Spiral Waves and Spatiotemporal Chaos in Cardiac Model by Restricting the Potassium Current [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(2): 5-8. |
[11] | YAN Minxiu, JIN Qisen. Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 8-21. |
[12] | LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12. |
[13] | XU Ke-sheng, ZHANG Wei-dong, TANG Guo-ning. Synchronization and Anti-Synchronization on Hindmarsh-Rose Neuron Model via Single Variable Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 5-8. |
|