Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 1-7.doi: 10.16088/j.issn.1001-6600.2023032001

    Next Articles

Chaos Prediction of a Motor System with Two Linearly Coupled Reservoir Computers

MA Qianran, WEI Duqu*   

  1. College of Electronic and Information Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2023-03-20 Revised:2023-04-20 Published:2023-12-04

Abstract: In order to solve the problem of chaotic time series prediction of permanent magnet synchronous motors, a model containing two linearly coupled reservoir computers is proposed in this paper. By seeking the optimal coupling coefficients in the two reservoir computers, the chaotic behavior of the target system can be predicted based on the time series data of the target system, while achieving higher prediction accuracy and longer prediction time. Using a PMSM as the object of study, it is demonstrated that the linearly coupled reservoir computers models give the best prediction with an RMSE=9.14×10-4 at a coupling factor α=0.803.

Key words: permanent magnet synchronous motor (PMSM), linearly coupled, reservoir computing, chaos prediction

CLC Number:  O415.5;TM341
[1] ROBERTS C, LARA J D, HENRIQUEZ-AUBA R, et al. Continuous-time echo state networks for predicting power system dynamics[J]. Electric Power Systems Research, 2022, 212: 108562. DOI: 10.1016/j.epsr.2022.108562.
[2] ZHANG G L, ZHONG H W, TAN Z F, et al. Texas electric power crisis of 2021 warns of a new blackout mechanism[J]. CSEE Journal of Power and Energy Systems, 2022, 8(1): 1-9. DOI: 10.17775/CSEEJPES.2021.07720.
[3] CARRERAS B A, LYNCH V E, DOBSON I, et al. Critical points and transitions in an electric power transmission model for cascading failure blackouts[J]. Chaos, 2002, 12(4): 985-994. DOI: 10.1063/1.1505810.
[4] 胡锦铭,韦笃取.不同阶次分数阶永磁同步电机的混合投影同步[J].广西师范大学学报(自然科学版),2021,39(4):1-8.DOI:10.16088/j.issn.1001-6600.2020070603.
[5] 周冬玥,胡福年,陈军.基于复杂网络的电力系统鲁棒性分析[J].电力系统保护与控制,2021,49(1):72-80.DOI:10.19783/j.cnki.pspc.200204.
[6] 戴磊,魏海峰,李洋洋,等.基于分岔理论的永磁同步电机有限时间混沌控制[J].控制工程,2022,29(1):27-32.DOI:10.14107/j.cnki.kzgc.20200206.
[7] HEMATI N, KWATNY H. Bifurcation of equilibria and chaos in permanent-magnet machines[C]// Proceedings of 32nd IEEE Conference on Decision and Control. Piscataway, NJ: IEEE, 1993: 475-479. DOI: 10.1109/CDC.1993.325102.
[8] 李家祥,汪凤翔,柯栋梁,等.基于粒子群算法的永磁同步电机模型预测控制权重系数设计[J].电工技术学报,2021,36(1):50-59,76.DOI:10.19595/j.cnki.1000-6753.tces.200752.
[9] 郭士铭,韦笃取.随机扰动下多电机网络混沌振荡的反馈可调节控制[J].振动与冲击,2021,40(13):60-63,72.DOI:10.13465/j.cnki.jvs.2021.13.008.
[10] PECHUK V D, KRASNOPOLSKAYA T S, PECHUK E D. Maximum Lyapunov exponent calculation[C]// 14th Chaotic
Modeling and Simulation International Conference. Cham: Springer, 2022: 327-335. DOI: 10.1007/978-3-030-96964-6_22.
[11] HU Z Q, XU P C, ASHOUR E A, et al. Prediction and construction of drug-polymer binary system thermodynamic phase diagram in amorphous solid dispersions (ASDs)[J]. AAPSPharmSciTech, 2022, 23(6): 169. DOI: 10.1208/s12249-022-02319-4.
[12] 张春涛,马千里,彭宏.基于信息熵优化相空间重构参数的混沌时间序列预测[J].物理学报,2010,59(11):7623-7629.DOI:10.7498/aps.59.7623.
[13] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79(8): 2554-2558. DOI: 10.1073/pnas.79.8.2554.
[14] SAMMUT G, WEBB G I. Encyclopedia of machine learning[M]. New York: Springer, 2010. DOI: 10.1007/978-0-387-30164-8.
[15] JAEGER H. The “echo state” approach toanalysing and training recurrent neural networks-with an erratum note: GMD Report 148[R]. Bonn: German National Research Center for Information Technology, 2010: 13.
[16] 刘半藤,陈唯,尹则高,等.基于MCP正则化SWESN的时间序列预测方法研究[J].计算机仿真,2022,39(4):307-311.DOI:10.3969/j.issn.1006-9348.2022.04.060.
[17] 陈豪昌,韦笃取.基于储备池计算的电机系统混沌预测与同步研究[J].振动与冲击,2021,40(16):199-203.DOI:10.13465/j.cnki.jvs.2021.16.025.
[18] 张清勇,常万峰,李昶吾,等.基于IGSA-DESN的短时交通流预测方法[J].武汉理工大学学报,2022,44(7):89-95.DOI:10.3963/j.issn.1671-4431.2022.07.013.
[19] 沈富鑫,邴其春,张伟健,等.基于回声状态网络模型的短时交通流混沌预测[J].济南大学学报(自然科学版),2022,36(2):142-147,154.DOI:10.13349/j.cnki.jdxbn.20211011.002.
[20] 徐玚,徐晓钟.基于ESN和改进RBFNN的城市燃气负荷预测[J].计算机系统应用,2019,28(3):28-35.DOI:10.15888/j.cnki.csa.006798.
[21] 胡锦铭,韦笃取.分数阶永磁同步电机的广义同步研究[J].广西师范大学学报(自然科学版),2020,38(6):14-20.DOI:10.16088/j.issn.1001-6600.2020.06.002.
[22] HU W C, ZHANG Y B, MA R C, et al. Synchronization between two linearly coupled reservoir computers[J]. Chaos Solitons & Fractals, 2022, 157: 111882. DOI: 10.1016/j.chaos.2022.111882.
[23] 李健康,韦笃取,罗晓曙,等.分布式发电系统与感性负载网络混沌同步控制[J].广西师范大学学报(自然科学版),2019,37(3):33-41.DOI:10.16088/j.issn.1001-6600.2019.03.004.
[1] ZHONG Xiaoyun. Mittag-Leffler Projective Synchronization of Fractional Order Newton-Leipnik Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 113-121.
[2] RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181.
[3] WU Lei, YANG Zhi, ZHANG Lei, BAI Kezhao. Sliding Mode Control for Fractional Chaotic Order Synchronous Reluctance Motor [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 62-70.
[4] HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105.
[5] WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51.
[6] WU Lei, MA Shujing, XIAO Huapeng, TANG Wen. Tracking Control of Synchronous Reluctance Motor Basedon Feedback Linearization Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 10-16.
[7] WU Lei,YANG Li,GUO Pengxiao. Feedback Linearization Control of Rucklidge System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 21-27.
[8] CHEN Yan-fei, JIA Zhen, DENG Qi-xiang, XIE Meng-shu, YU Xiao-ling. Adaptive Generalized Projective Synchronization for HyperchaoticLiu System and Parameters Identification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 10-14.
[9] LI Yong, JIA Zhen. Applications of Discrete Chaotic Systems in Secure Communication [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 15-19.
[10] ZHONG Min, TANG Guo-ning. Suppressing Spiral Waves and Spatiotemporal Chaos in Cardiac Model by Restricting the Potassium Current [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(2): 5-8.
[11] YAN Minxiu, JIN Qisen. Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 8-21.
[12] LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12.
[13] XU Ke-sheng, ZHANG Wei-dong, TANG Guo-ning. Synchronization and Anti-Synchronization on Hindmarsh-Rose Neuron Model via Single Variable Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 5-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] YAN Minxiu, JIN Qisen. Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 8 -21 .
[3] ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22 -32 .
[4] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33 -50 .
[5] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51 -61 .
[6] LIN Wancong, HAN Mingjie, JIN Ting. Multi-level Argument Position Classification Method via Data Augmentation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 62 -69 .
[7] WEN Xueyan, GU Xunkai, LI Zhen, HUANG Yinglai, HUANG Helin. Study of Idiom Reading Comprehension Methods Integrating Interpretation and Bidirectional Interaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 70 -79 .
[8] SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80 -91 .
[9] XU Ziyu, WU Keqing. Uniqueness of Positive Solutions for Caputo Fractional Differential Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 92 -104 .
[10] GUO Jie, SUO Hongmin, ZHU Yiying, GUO Jiachao. Existence of Solutions for a Class of Kirchhoff Type Problems with Critical Exponent and Indefinite Potential[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 105 -112 .