Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (6): 8-21.doi: 10.16088/j.issn.1001-6600.2023040201

Previous Articles     Next Articles

Construction of Multi-dimensional Chaotic Systems and Its Multi-channel Adaptive Control

YAN Minxiu*, JIN Qisen   

  1. College of Information Engineering, Shenyang University of Chemical Technology, Shenyang Liaoning 110142, China
  • Received:2023-04-02 Revised:2023-05-01 Published:2023-12-04

Abstract: To solve the problem of simple behavior and small key space in low dimensional chaotic systems, a design method of multi-dimensional chaotic systems is proposed. The general formula of system structure and equilibrium point are given, and the chaotic property of Smale horseshoe system is verified by Si’lnikov theorem. Taking a three-dimensional chaotic system as an example, its dynamic characteristics are analyzed and its displacement control is enhanced. The chaos system is constructed by Multisim circuit simulation software, and the realization of the system is verified. Based on the adaptive theory, a multi-channel adaptive synchronization controller is designed. The controller can realize synchronization under various system error combinations and improve the security of chaotic systems in secure communication.

Key words: chaotic system, Si’lnikov, homologous orbit, Smale horseshoe, chaotic circuit, synchronous control

CLC Number:  O415.5;TP273
[1] RAHMAN Z A S A, JASIM B H. Hidden dynamics investigation, fast adaptive synchronization, and chaos-based secure communication scheme of a new 3D fractional-order chaotic system[J]. Inventions, 2022, 7(4): 108. DOI: 10.3390/inventions7040108.
[2] 梁钰婷,罗玉玲,张顺生.基于压缩感知的混沌图像加密研究综述[J].广西师范大学学报(自然科学版),2022,40(5):49-58.DOI:10.16088/j.issn.1001-6600.2022012003.
[3] DIMITROVA E S, YORDANOV O I. Statistics of some low-dimensional chaotic flows[J]. International Journal of Bifurcation and Chaos, 2001, 11(10): 2675-2682. DOI: 10.1142/S0218127401003735.
[4] AZIMI S, ASHTARI O, SCHNEIDER T M. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method[J]. Physical Review E, 2022, 105(1): 014217. DOI: 10.1103/PhysRevE.105.014217.
[5] 王伟豪,刘树勇,柴凯,等.类元素周期律框架下新混沌系统的构造方法研究[J].武汉理工大学学报,2020,42(5):77-85.
[6] ZANG H Y, LIU J Y, LI J. Construction of a class of high-dimensional discrete chaotic systems[J]. Mathematics, 2021, 9(4): 365. DOI: 10.3390/math9040365.
[7] WANG X. Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system[J]. Chaos Solitons & Fractals, 2009, 42(4): 2208-2217. DOI: 10.1016/j.chaos.2009.03.137.
[8] ZHOU L Q, CHEN F Q. Hopf bifurcation and Si’lnikov chaos of Genesio system[J]. Chaos, Solitons, and Fractals, 2009, 40(3): 1413-1422. DOI: 10.1016/j.chaos.2007.09.033.
[9] LI C B, SPROTT J C, LIU Y J, et al. Offset boosting for breeding conditional symmetry[J]. International Journal of Bifurcation and Chaos, 2018, 28(14): 1850163. DOI: 10.1142/S0218127418501638.
[10] LI C B, GU Z Y, LIU Z H, et al. Constructing chaoticrepellors[J]. Chaos, Solitons, and Fractals, 2021, 142: 110544. DOI: 10.1016/j.chaos.2020.110544.
[11] MA C G, MOU J, XIONG L, et al. Dynamical analysis of a new chaotic system: asymmetricmultistability, offset boosting control and circuit realization[J]. Nonlinear Dynamics, 2021, 103(3): 2867-2880. DOI: 10.1007/s11071-021-06276-8.
[12] TAKOUGANG KINGNI S, RAJAGOPAL K, ÇIÇEK S, et al. Dynamic analysis, FPGA implementation, and cryptographic application of an autonomous 5D chaotic system with offset boosting[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(6): 950-961. DOI: 10.1631/FITEE.1900167.
[13] LENG X X, TIAN B W, ZHANG L M, et al. Study of a novel conservative chaotic system with special initial offset boosting behaviors[J]. Chaos, 2022, 32(7): 073102. DOI: 10.1063/5.0093110.
[14] ZHANG Z F, HUANG L L, LIU J, et al. A new method of constructing cyclic symmetric conservative chaotic systems and improved offset boosting control[J]. Chaos, Solitons, and Fractals, 2022, 158: 112103. DOI: 10.1016/j.chaos.2022.112103.
[15] KUZ’MENKO A A. Forced sliding mode control for chaotic systems synchronization[J]. Nonlinear Dynamics, 2022, 109(3): 1763-1775. DOI: 10.1007/s11071-022-07552-x.
[16] IZADBAKHSH A, GHOLIZADE-NARM H, DEYLAMI A. Observer-based adaptive controller design for chaos synchronization using Bernstein-type operators[J]. International Journal of Robust and Nonlinear Control, 2022, 32(7): 4318-4335. DOI: 10.1002/rnc.6026.
[17] LI S J, WU Y W, ZHENG G. Adaptive synchronization for hyperchaotic Liu system[J]. Frontiers in Physics, 2022, 9: 812048. DOI: 10.3389/fphy.2021.812048.
[18] LI Y, WANG H P, TIAN Y. Fractional-order adaptive controller for chaotic synchronization and application to a dual-channel secure communication system[J]. Modern Physics Letters B, 2019, 33(24): 1950290. DOI: 10.1142/S0217984919502907.
[19] TAN Z L, LIU Y, SUN J Y, et al. Chaos synchronization control for stochastic nonlinear systems of interior PMSMs based on fixed-time stability theorem[J]. Applied Mathematics and Computation, 2022, 430: 127115. DOI: 10.1016/j.amc.2022.127115.
[20] 颜闽秀,林建峰,谢俊红.具有无穷多共存类吸引子的保守混沌系统同步控制[J].南京邮电大学学报(自然科学版),2021,41(6):66-74.DOI:10.14132/j.cnki.1673-5439.2021.06.010.
[21] 徐昌彪,钟德,郭桃桃.具有多种平衡点类型的大范围混沌系统及其拓扑马蹄[J].振动与冲击,2020,39(9):235-241,247.DOI:10.13465/j.cnki.jvs.2020.09.033.
[1] SHAO Huiting, YANG Qigui. Complex Dynamics of a Six-dimensional Hyperchaotic System with Four Positive Lyapunov Exponents [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 433-444.
[2] HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] MA Qianran, WEI Duqu. Chaos Prediction of a Motor System with Two Linearly Coupled Reservoir Computers[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 1 -7 .
[3] ZHAO Wei, TIAN Shuai, ZHANG Qiang, WANG Yaoshen, WANG Sibo, SONG Jiang. Fritillaria ussuriensis Maxim Detection Model Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 22 -32 .
[4] GAO Fei, GUO Xiaobin, YUAN Dongfang, CAO Fujun. Improved PINNs Method for Solving the Convective Dominant Diffusion Equation with Boundary Layer[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 33 -50 .
[5] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51 -61 .
[6] LIN Wancong, HAN Mingjie, JIN Ting. Multi-level Argument Position Classification Method via Data Augmentation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 62 -69 .
[7] WEN Xueyan, GU Xunkai, LI Zhen, HUANG Yinglai, HUANG Helin. Study of Idiom Reading Comprehension Methods Integrating Interpretation and Bidirectional Interaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 70 -79 .
[8] SONG Guanwu, CHEN Zhiming, LI Jianjun. Remote Sensing Image Classification with Cascade Attention Based on ResNet-50[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 80 -91 .
[9] XU Ziyu, WU Keqing. Uniqueness of Positive Solutions for Caputo Fractional Differential Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 92 -104 .
[10] GUO Jie, SUO Hongmin, ZHU Yiying, GUO Jiachao. Existence of Solutions for a Class of Kirchhoff Type Problems with Critical Exponent and Indefinite Potential[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 105 -112 .