Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 26-36.doi: 10.16088/j.issn.1001-6600.2023020502
Previous Articles Next Articles
WU Zhengqing, CAO Hui*, LIU Baokai
[1] JINDAL N, LIU B. Opinion spam and analysis[C]// WSDM’08: Proceedings of the 2008 International Conference on Web Search and Data Mining. New York, NY: Association for Computing Machinery, 2008: 219-230. DOI: 10.1145/1341531.1341560. [2] OTT M, CHOI Y J, CARDIE C, et al. Finding deceptive opinion spam by any stretch of the imagination[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2011: 309-319. [3] MUKHERJEE A, VENKATARAMAN V, LIU B, et al. Fake review detection: classification and analysis of real and pseudo reviews: UIC-CS-2013-03[R]. Chicago: Department of Computer Science of University of Illinois at Chicago, 2013. [4] LI H Y, CHEN Z Y, LIU B, et al. Spotting fake reviews via collective Positive-Unlabeled learning[C]// 2014 IEEE International Conference on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2014: 899-904. DOI: 10.1109/ICDM.2014.47. [5] 任亚峰, 姬东鸿, 张红斌, 等. 基于PU学习算法的虚假评论识别研究[J]. 计算机研究与发展, 2015, 52(3): 639-648. DOI: 10.7544/issn1000-1239.2015.20131473. [6] ABRI F, GUTIERREZ L F, NAMIN A S, et al.Fake reviews detection through analysis of linguistic features[EB/OL]. (2020-10-08)[2023-02-05]. https://arxiv.org/abs/2010.04260. DOI: 10.48550/arXiv.2010.04260. [7] 景亚鹏. 基于深度学习的欺骗性垃圾信息识别研究[D]. 上海: 华东师范大学, 2014. [8] ZHANG W, DU Y H, YOSHIDA T, et al. DRI-RCNN: an approach to deceptive review identification using recurrent convolutional neural network[J]. Information Processing and Management, 2018, 54(4): 576-592. DOI: 10.1016/j.ipm.2018.03.007. [9] LI A, QIN Z, LIU R S, et al.Spam review detection with graph convolutional networks[C]// CIKM’19: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York, NY: Association for Computing Machinery, 2019: 2703-2711. DOI: 10.1145/3357384.3357820. [10] STANTON G, IRISSAPPANE A A. GANs for semi-supervised opinion spam detection[C]// Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19). Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 5204-5210. DOI: 10.24963/ijcai.2019/723. [11] 李璐旸. 基于表示学习的虚假信息检测研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. DOI: 10.7666/d.D01332130. [12] LI L Y, QIN B, REN W J, et al. Document representation and feature combination for deceptive spam review detection[J]. Neurocomputing, 2017, 254: 33-41. DOI: 10.1016/j.neucom.2016.10.080. [13] 刘雨心, 王莉, 张昊. 基于分层注意力机制的神经网络垃圾评论检测模型[J]. 计算机应用, 2018, 38(11): 3063-3068, 3074. DOI: 10.11772/j.issn.1001-9081.2018041356. [14] 颜梦香, 姬东鸿, 任亚峰. 基于层次注意力机制神经网络模型的虚假评论识别[J]. 计算机应用, 2019, 39(7): 1925-1930. DOI: 10.11772/j.issn.1001-9081.2018112340. [15] 曾致远, 卢晓勇, 徐盛剑, 等. 基于多层注意力机制深度学习模型的虚假评论检测[J]. 计算机应用与软件, 2020, 37(5): 177-182. DOI: 10.3969/j.issn.1000-386x.2020.05.031. [16] 张蓉, 张献国. 基于层次异构图注意力网络的虚假评论检测[J]. 计算机应用, 2021, 41(5): 1275-1281. DOI: 10.11772/j.issn.1001-9081.2020081190. [17] KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, PA: Association for Computational Linguistics, 2014: 1746-1751. DOI: 10.3115/v1/D14-1181. [18] 汤皓星. 商品虚假评论检测技术研究及软件实现[D]. 兰州: 西北民族大学, 2021. DOI: 10.27408/d.cnki.gxmzc.2021.000036. [19] WANG B Y, ZHAO D H, LIOMA C, et al. Encoding word order in complex embeddings[C]// International Conference on Learning Representations 2020. Virtual: ICLR, 2020: 1-15. [20] LI S, ZHAO Z, HU R F, et al. Analogical reasoning on Chinese morphological and semantic relations[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 138-143. DOI: 10.18653/v1/P18-2023. [21] SONG Y, SHI S M, LI J, et al. Directional skip-gram: explicitly distinguishing left and right context for word embeddings[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 175-180. DOI: 10.18653/v1/N18-2028. [22] ZHOU P, QI Z Y, ZHENG S C, et al. Text classification improved by integrating bidirectional LSTM with two-dimensional maxpooling[EB/OL]. (2016-11-21)[2023-02-05]. https://arxiv.org/abs/1611.06639. DOI: 10.48550/arXiv.1611.06639. [23] ZHANG R, LEE H, RADEV D R. Dependency sensitive convolutional neural networks for modeling sentences and documents[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, PA: Association for Computational Linguistics, 2016: 1512-1521. DOI: 10.18653/v1/N16-1177. [24] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2017: 562-570. DOI: 10.18653/v1/P17-1052. [25] LAI A W, XU L H, LIU K, et al. Recurrent convolutional neural networks for text classification[C]// AAAI’15: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2015: 2267-2273. DOI: 10.1609/aaai.v29i1.9513. [26] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2016: 207-212. DOI: 10.18653/v1/P16-2034. [27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010. [28] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. DOI: 10.18653/v1/N19-1423. [29] LIU P F, QIU X P, HUANG X J. Recurrent neural network for text classification with multi-task learning[C] // Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16). Palo Alto, CA: AAAI Press, 2016: 2873-2879. [30] JOULIN A, GRAVE E, BOJANOWSKI E, et al. Bag of tricks for efficient text classification[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Stroudsburg, PA: Association for Computational Linguistics, 2017: 427-431. DOI: 10.18653/v1/E17-2068. |
[1] | HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134. |
[2] | DENG Xizhen, JIANG Ming, CEN Mingcan, LUO Yuling. Ransomware Classification Based on Entropy Image Static Analysis Technology [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 91-104. |
[3] | WANG Li’e, WANG Yihui, LI Xianxian. A Multi-source Data Fusion and Privacy Protection Method of POI Recommendation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 87-101. |
[4] | PAN Haiming, CHEN Qingfeng, QIU Jie, HE Naixu, LIU Chunyu, DU Xiaojing. Multi-hop Knowledge Graph Question Answering Based on Convolution Reasoning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 102-112. |
[5] | TIAN Sheng, SONG Lin. Traffic Sign Recognition Based on CNN and Bagging Integration [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 35-46. |
[6] | WANG Yuhang, ZHANG Canlong, LI Zhixin, WANG Zhiwen. Image Captioning According to User’s Intention and Style [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 91-103. |
[7] | LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48. |
[8] | ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56. |
[9] | WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75. |
[10] | ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87. |
[11] | WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171. |
[12] | MA Chengxu, ZENG Shangyou, ZHAO Junbo, CHEN Hongyang. Research on Backlight Image Enhancement Based on Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 81-90. |
[13] | CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146. |
[14] | YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12. |
[15] | DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40. |
|