Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 109-122.doi: 10.16088/j.issn.1001-6600.2022102601

Previous Articles     Next Articles

Rolling Bearing Fault Diagnosis Based on Multi-scale Attentional Inverted Residual Model

TANG Houqing1, XIN Binbin2, ZHU Hongyu1, YI Jiawei1, ZHANG Dongdong1*, WU Xinzhang1, SHUANG Feng1   

  1. 1. School of Electrical Engineering, Guangxi University, Nanning Guangxi 530004, China;
    2. Niutech Environment Technology Corporation, Jinan Shandong 250013, China
  • Received:2022-10-26 Revised:2023-02-22 Online:2023-07-25 Published:2023-09-06

Abstract: The traditional deep learning model network applied to rolling bearing fault identification has low diagnosis accuracy and long training time. To overcome these disadvantages, this paper proposes a multi-scale attention reverse residuals convolutional neural network (MARCNN). Firstly, multi-scale feature extraction module adopts multi-scale convolution to obtain different levels of original signal features and adaptively extract fault feature information. Secondly, feature graph expansion standard convolution is used to construct the shallow convolution module to improve the shallow network learning ability. Finally, SE-Mobile module is constructed to mine deep fault features and reduce the number of model parameters. All modules combine attention mechanism to integrate feature weights of different dimensions to improve model feature learning ability. The experimental results show that the model can reduce the number of parameters and improve the training speed, and the accuracy of the model can reach 99.98%, 98.41% and 94.98% under fixed, Gaussian noise and variable load conditions, respectively. It is shown that the model has a certain anti-noise and generalization ability.

Key words: attentional mechanism, reverse residual module, fault diagnosis, rolling bearing, CNN

CLC Number:  TP18; TH133.33
[1] 赵小强, 张亚洲. 利用改进卷积神经网络的滚动轴承变工况故障诊断方法[J]. 西安交通大学学报, 2021, 55(12): 108-118. DOI: 10.7652/xjtuxb202112013.
[2] 赵凯辉, 吴思成, 李涛, 等. 基于Inception-BLSTM的滚动轴承故障诊断方法研究[J]. 振动与冲击, 2021, 40(17):
290-297. DOI: 10.13465/j.cnki.jvs.2021.17.038.
[3] 王贡献, 张淼, 胡志辉, 等. 基于多尺度均值排列熵和参数优化支持向量机的轴承故障诊断[J]. 振动与冲击, 2022, 41(1): 221-228. DOI: 10.13465/j.cnki.jvs.2022.01.028.
[4] 李兵, 韩睿, 何怡刚, 等. 改进随机森林算法在电机轴承故障诊断中的应用[J]. 中国电机工程学报, 2020, 40(4): 1310-1319, 1422. DOI: 10.13334/j.0258-8013.pcsee.190501.
[5] SU Z Q,TANG B P,MA J H,et al. Fault diagnosis method based on incremental enhanced supervised locally linear embedding and adaptive nearest neighbor classifier[J]. Measurement, 2014, 48: 136-148. DOI: 10.1016/j.measurement. 2013.10.041.
[6] DENG F Y, DING H, YANG S P, et al. An improved deep residual network with multiscale feature fusion for rotating machinery fault diagnosis[J]. Measurement Science and Technology, 2020, 32(2): 024002. DOI: 10.1088/1361-6501/abb917.
[7] 袁建虎, 韩涛, 唐建, 等. 基于小波时频图和CNN的滚动轴承智能故障诊断方法[J]. 机械设计与研究, 2017, 33(2): 93-97. DOI: 10.13952/j.cnki.jofmdr.2017.0115.
[8] LIU C, CHENG G, CHEN X H, et al. Planetary gears feature extraction and fault diagnosis method based on VMD and CNN[J]. Sensors, 2018, 18(5): 1523. DOI: 10.3390/s18051523.
[9] JING L Y, ZHAO M, LI P, et al. A convolutional neural network based feature learning and fault diagnosis method for the condition monitoring of gearbox[J]. Measurement, 2017, 111: 1-10. DOI: 10.1016/j.measurement.2017.07.017.
[10] 马新娜, 赵猛, 祁琳. 基于卷积脉冲神经网络的故障诊断方法研究[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 112-120. DOI: 10.16088/j.issn.1001-6600.2021070808.
[11] 李辉, 徐伟烝. 噪声干扰下CCSD-CNN轴承故障诊断方法[J/OL]. 轴承, 2022: 1-9[2022-10-26]. http://kns.cnki.net/kcms/detail/41.1148.TH.20220822.1708.002.html.
[12] 张安安, 黄晋英, 冀树伟, 等. 基于卷积神经网络图像分类的轴承故障模式识别[J]. 振动与冲击, 2020, 39(4): 165-171. DOI: 10.13465/j.cnki.jvs.2020.04.021.
[13] 宋向金, 赵文祥. 交流电机信号特征分析的滚动轴承故障诊断方法综述[J]. 中国电机工程学报, 2022, 42(4): 1582-1596. DOI: 10.13334/j.0258-8013.pcsee.210760.
[14] ZHANG W, PENG G L, LI C H. Bearings fault diagnosis based on convolutional neural networks with 2-D representation of vibration signals as input[J]. MATEC Web of Conferences, 2017, 95: 13001. DOI: 10.1051/matecconf/20179513001.
[15] PENG D D, LIU Z L, WANG H, et al. A novel deeper one-dimensional CNN with residual learning for fault diagnosis of wheelset bearings in high-speed trains[J]. IEEE Access, 2019, 7: 10278-10293. DOI: 10.1109/ACCESS.2018.2888842.
[16] WEN L, LI X Y, GAO L, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998. DOI: 10.1109/TIE.2017.2774777.
[17] WEN L, LI X, LI X Y, et al. A new transfer learning based on VGG-19 network for fault diagnosis[C]// 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD). Piscataway, NJ: IEEE, 2019: 205-209. DOI: 10.1109/CSCWD.2019.8791884.
[18] HOANG D T, KANG H J. Rolling element bearing fault diagnosis using convolutional neural network and vibration image[J]. Cognitive Systems Research, 2019, 53: 42-50. DOI: 10.1016/j.cogsys.2018.03.002.
[19] 田科位, 董绍江, 姜保军, 等. 基于改进深度残差网络的轴承故障诊断方法[J]. 振动与冲击, 2021, 40(20): 247-254. DOI: 10.13465/j.cnki.jvs.2021.20.031.
[20] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143. DOI: 10.19650/j.cnki.cjsi.J1803286.
[21] 曲建岭, 余路, 袁涛, 等. 基于卷积神经网络的层级化智能故障诊断算法[J]. 控制与决策, 2019, 34(12): 2619-2626. DOI: 10.13195/j.kzyjc.2018.0253.
[22] 张训杰, 张敏, 李贤均. 基于二维图像和CNN-BiGRU网络的滚动轴承故障模式识别[J]. 振动与冲击, 2021, 40(23): 194-201, 207. DOI: 10.13465/j.cnki.jvs.2021.23.026.
[23] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 4510-4520. DOI: 10.1109/CVPR.2018.00474.
[24] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Computer Vision -ECCV 2018: LNCS Volume 11218. Cham: Springer, 2018: 122-138. DOI: 10.1007/978-3-030-01264-9_8.
[25] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size[EB/OL]. (2016-11-04)[2022-10-26]. https://arxiv.org/abs/1602.07360. DOI: 10.48550/arXiv. 1602.07360.
[26] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2017: 1800-1807. DOI: 10.1109/ CVPR.2017.195.
[27] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745.
[28] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation function[EB/OL]. (2017-10-27)[2022-10-26]. https://arxiv.org/abs/1710.05941v2. DOI: 10.48550/arXiv.1710.05941.
[29] 姚齐水, 别帅帅, 余江鸿, 等. 一种结合改进Inception V2模块和CBAM的轴承故障诊断方法[J]. 振动工程学报, 2022, 35(4): 949-957. DOI: 10.16385/j.cnki.issn.1004-4523.2022.04.019.
[30] 陈晓雷, 孙永峰, 李策, 等. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 296-309. DOI: 10.13229/j.cnki.jdxbgxb20211031.
[31] JIN G Q, ZHU T Y, AKRAM M W, et al. An adaptive anti-noise neural network for bearing fault diagnosis under noise and varying load conditions[J]. IEEE Access, 2020, 8: 74793-74807. DOI: 10.1109/ACCESS.2020.2989371.
[32] SHAO S Y, MCALEER S, YAN R Q, et al. Highly accurate machine fault diagnosis using transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2446-2455. DOI: 10.1109/TII.2018.2864759.
[1] TIAN Sheng, ZHANG Jinming, LI Chengwei, LI Jia. Fault Prediction of Electric Vehicle Based on BS_Bagging-cLightGBM Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 9-19.
[2] MA Xinna, ZHAO Men, QI Lin. Fault Diagnosis Based on Spiking Convolution Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 112-120.
[3] JIANG Rui, XU Juan, LI Qiang. A Prediction Method of Bearing Remaining Useful Life Based on Cross Domain Mean Approximation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 121-131.
[4] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98.
[5] LÜ Huilian, HU Weiping. Research on Speech Emotion Recognition Based on End-to-End Deep Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 20-26.
[6] BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1-11.
[7] LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106.
[8] LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Jiu-cheng, LI Xiao-yan, LI Shuang-qun, ZHANG Ling-jun. Feature Images Retrieval Method of Tolerance Granular-basedMulti-level Texture[J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 186 -187 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[5] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[6] WANG Dangshu, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan. Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 47 -57 .
[7] YU Siting, PENG Jingjing, PENG Zhenyun. Rank Constraint Least Square Symmetric Semidefinite Solutions and Its Optimal Approximation of the Matrix Equation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 136 -144 .
[8] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[9] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[10] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162 -172 .