Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (3): 232-241.doi: 10.16088/j.issn.1001-6600.2021122803
Previous Articles Next Articles
CHEN Menglin, CHEN Yuhang, FENG Jinyu, GAO Shu, HUANG Zhi, SU Chengyuan, LIN Xiangfeng*
[1] ZHOU S Y, JIN L J, GU P Y, et al. Novel calixarene-based porous organic polymers with superfast removal rate and ultrahigh adsorption capacity for selective separation of cationic dyes[J]. Chemical Engineering Journal, 2022, 433: 134422. DOI: 10.1016/j.cej.2021.134422. [2] PATHANIA D, BHAT V S, MANNEKOTE SHIVANNA J, et al. Garlic peel based mesoporous carbon nanospheres for an effective removal of malachite green dye from aqueous solutions: detailed isotherms and kinetics[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 276: 121197. DOI: 10.1016/j.saa.2022.121197. [3] SULTANA M, ROWNOK M H, SABRIN M et al. A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption[J]. Cleaner Engineering and Technology, 2022, 6: 100382. DOI: 10.1016/j.clet.2021.100382. [4] AHMAD T, MANSHA M, KAZI I W, et al. Synthesis of 3,5-diaminobenzoic acid containing crosslinked porous polyamine resin as a new adsorbent for efficient removal of cationic and anionic dyes from aqueous solutions[J]. Journal of Water Process Engineering, 2021, 43: 102304. DOI: 10.1016/j.jwpe.2021.102304. [5] SANTOS S C R, BOAVENTURA R A R. Adsorption of cationic and anionic azo dyes on sepiolite clay: equilibrium and kinetic studies in batch mode[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 1473-1483. DOI: 10.1016/j.jece.2016.02.009. [6] LARGO F, HAOUNATI R, AKHOUAIRI S, et al. Adsorptive removal of both cationic and anionic dyes by using sepiolite clay mineral as adsorbent: experimental and molecular dynamic simulation studies[J]. Journal of Molecular Liquids, 2020, 318: 114247. DOI: 10.1016/j.molliq.2020.114247. [7] YU H, ZHU Y F, XU J, et al. Fabrication porous adsorbents templated from modified sepiolite-stabilized aqueous foams for high-efficient removal of cationic dyes[J]. Chemosphere, 2020, 259: 126949. DOI: 10.1016/j.chemosphere.2020. [8] ZHOU F, YE G Y, GAO Y T, et al.Cadmium adsorption by thermal-activated sepiolite: application to in-situ remediation of artificially contaminated soil[J]. Journal of Hazardous Materials, 2022, 423: 127104. DOI: 10.1016/j.jhazmat.2021.127104. [9] LEE J I, HONG S H, LEE C G, et al. Experimental and model study for fluoride removal by thermally activated sepiolite[J]. Chemosphere, 2020, 241: 125094. DOI: 10.1016/j.chemosphere.2019.125094. [10] 陈孟林,林香凤,黄智,等. 吸附剂的氧化法再生及其在废水处理中的应用[J]. 广西师范大学学报(自然科学版),2006, 24(2):68-71. DOI: 10.3969/j.issn.1001-6600.2006.02.017. [11] SALVADOR F, MARTIN-SANCHEZ N, SANCHEZ-HERNANDEZ R, et al. Regeneration of carbonaceous adsorbents. Part II: chemical, microbiological and vacuum regeneration[J]. Microporous and Mesoporous Materials, 2015, 202: 277-296. DOI: 10.1016/j.micromeso.2014.08.019. [12] 高志鹏,刘成,陶辉,等. 生物活性炭的热再生效能及在水厂中的应用[J]. 中国给水排水,2019, 35 (15):48-53. DOI: 10.19853/j.zgjsps.1000-4602.2019.15.010. [13] EL GAMAL M, MOUSA H A, EL-NAAS M H, et al. Bio-regeneration of activated carbon: a comprehensive review[J]. Separation and Purification Technology, 2018, 197: 345-359. DOI: 10.1016/j.seppur.2018.01.015. [14] WEDEKING C A, SNOEYINK V L, LARSON R A,et al. Wet air regeneration of PAC: comparison of carbons with different surface oxygen characteristics[J]. Water Research, 1987, 21(8): 929-937. DOI: 10.1016/S0043-1354(87)80010-6. [15] 吴慧玲,卫皇曌,孙文静,等. 湿式氧化法再生饱和片状活性炭及机理研究[J]. 环境化学,2019,38(3):572-580. DOI: 10.7524/j.issn.0254-6108.2018042805. [16] SHANG Q, FENG H X, FENG Z Y. Facile fabrication of sepiolite functionalized composites with tunable dielectric properties and their superior microwave absorption performance[J]. Journal of Colloid and Interface Science, 2020, 576: 444-456. DOI: 10.1016/j.jcis.2020.05.052. [17] YALÇIN H, BOZKAYA Ö. Ultramafic-rock-hosted vein sepiolite occurrences in the Ankara Ophiolitic Melange, central Anatolia, Turkey[J]. Clays and Clay Minerals, 2004, 52(2), 227-239. DOI: 10.1346/CCMN.2004.0520209. [18] MA Y, WU X Y, ZHANG G K. Core-shell Ag@Pt nanoparticles supported on sepiolite nanofibers for the catalytic reduction of nitrophenols in water: enhanced catalytic performance and DFT study[J]. Applied Catalysis B: Environmental, 2017,205:262-270. DOI: 10.1016/j.apcatb.2016.12.025. [19] VARELA C F, PAZOS M C, ALBA M D, et al. Organophilization of acid and thermal treated sepiolite for its application in BTEX adsorption from aqueous solutions[J]. Journal of Water Process Engineering, 2021, 40: 101949. DOI: 10.1016/j.jwpe.2021.101949. [20] ALKAN M, DOĞAN M, TURHAN Y, et al. Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions[J]. Chemical Engineering Journal, 2008, 139(2): 213-223. DOI: 10.1016/j.cej.2007.07.080. [21] WU J Y, WANG Y H, WU Z X, et al. Adsorption properties and mechanism of sepiolite modifified by anionic and cationic surfactants on oxytetracycline from aqueous solutions[J]. Science of the Total Environment, 2020, 708: 134409. DOI: 10.1016/j.scitotenv.2019.134409. [22] SAEED T, NAEEM A, DIN I U, et al. Synthesis of chitosan composite of metal-organic framework for the adsorption of dyes; kinetic and thermodynamic approach[J]. Journal of Hazardous Materials, 2022, 427: 127902. DOI: 10.1016/j.jhazmat.2021.127902. [23] 叶振华. 化工吸附分离过程[M]. 北京:中国石化出版社,1992. [24] DOĞAN M, ALKAN M, DEMIRBAŞ Ö, et al. Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions[J]. Chemical Engineering Journal, 2006, 124(1/3): 89-101. DOI: 10.1016/j.cej.2006.08.016. [25] ZHANG Y D, WANG L J, WANG F, et al. Phase transformation and morphology evolution of sepiolite fibers during thermal treatment[J]. Applied Clay Science,2017,143: 205-211. DOI: 10.1016/j.clay.2017.03.042. [26] MAQUEDA C, DOS SANTOS AFONSO M, MORILLO E, et al. Adsorption of diuron on mechanically and thermally treated montmorillonite and sepiolite[J]. Applied Clay Science, 2013, 72: 175-183. DOI: 10.1016/j.clay.2012.10.017. [27] YU J, HE W T, LIU B. Adsorption of acid orange Ⅱ with two step modified sepiolite: optimization, adsorption performance, kinetics, thermodynamics and regeneration[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1732. DOI: 10.3390/ijerph17051732. [28] BAIG U, UDDIN M K, GONDAL M A. Removal of hazardous azo dye from water using synthetic nano adsorbent: facile synthesis, characterization, adsorption, regeneration and design of experiments[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584: 124031. DOI: 10.1016/j.colsurfa.2019.124031. [29] FAGBOHUN E O, WANG Q Y, SPESSATO L, et al. Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange[J]. Surfaces and Interfaces, 2022, 29: 101696. DOI: 10.1016/j.surfin.2021.101696. [30] SHENDE R V, MAHAJANI V V. Wet oxidative regeneration of activated carbon loaded with reactive dye[J]. Waste Management, 2002, 22(1): 73-83. DOI: 10.1016/S0956-053X(01)00022-8. [31] ZHOU G L, TIAN H Y, SUN H Q, et al. Synthesis of carbon xerogels at varying sol-gel pHs, dye adsorption and chemical regeneration[J]. Chemical Engineering Journal, 2011, 171(3): 1399-1405. DOI: 10.1016/j.cej.2011.05.054. |
[1] | XU Xiangwei, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Adsorption of Crystalline Violet by Bacillus sp. LM-24 in Deep Sea [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 221-231. |
[2] | YANG Shenglong, MU Qingchuang, ZHANG Zhihua, LIU Kui. Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 19-26. |
[3] | DENG Hua, ZHANG Junyu, HUANG Rui, WANG Wei, HU Lening. Adsorption Capacity and Mechanism of ZnO Loading Bamboo Biochar for Cr(Ⅵ) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 131-142. |
[4] | DENG Hua, LI Qiuyan, ZHOU Ruishuang, PANG Shuyue, LIU Jinyu, KANG Caiyan. Adsorption of Cd(Ⅱ) and Cu(Ⅱ) from Aqueous Solutions by Polygonum Pubescens Blume Powder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 102-112. |
[5] | WANG Nana, ZHANG Xiang. Adsorption Properties of PAN-based Weakly Basic Ion Exchange Fiber for Zn2+ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 86-94. |
[6] | LIN Haijiao, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Immobilization of Lipase by Crosslinking and Then AdsorptionMethod Using Macroporous Adsorbent Resin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 100-108. |
[7] | WU Juan,ZOU Hua,MEI Ping. Surface Properties of Carboxylate Gemini Surfactant [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 78-86. |
[8] | QIN Fang, JIANG Qin-feng, WANG Ting, WANG Yu-rong, FENG Ji-qing, CHEN Jin-yi. Removal Capacity of Microcystis aeruginosaby Mg/Al Hydrotalcite and Zn/Al Hydrotalcite [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 115-121. |
[9] | LU Qun, SHI Jun-hui, ZENG Xiao-kang, ZHOU Kai, LEIAn-ping, ZAN Qi-jie. Primary Study on Sprout Regeneration of Mangrove after Logging in Futian,Shenzhen Bay [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 107-112. |
|