Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (1): 76-83.doi: 10.16088/j.issn.1001-6600.2018.01.010
Previous Articles Next Articles
TANG Guoji1*,ZHAO Ting2,HE Dengxu1
CLC Number:
[1] 张石生.变分不等式及其相关问题[M].重庆: 重庆出版社,2008. [2] BIANCHI M,HADJISAVVAS N,SCHAIBLE S.Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities[J].Journal of Optimization Theory and Applications,2004,122(1):1-17. DOI:10.1023/B:JOTA.0000041728.12683.89. [3] BIANCHI M,PINI R. Coercivity conditions for equilibrium problems[J]. Journal of Optimization Theory and Applications,2005,124(1): 79-92. DOI:10.1007/s10957-004-6466-9. [4] DANIILIDIS A,HADJISAVVAS N. Coercivity conditions and variational inequalities[J]. Mathematical Programming,1999,86(2):433-438. DOI:10.1007/s101070050097. [5] FACCHINEI F,PANG Jongshi.Finite-Dimensional variational inequalities and complementarity problems[M]. New York:Springer-Verlag,2003. DOI:10.1007/b97543. [6] FAN Jianghua,WANG Xiaoguo.Solvability of generalized variational inequality problems for unbounded sets in reflexive Banach spaces[J].Journal of Optimization Theory and Applications,2009,143(1):59-74. DOI:10.1007/s10957-009-9556-x. [7] HAN J,HUANG Z H,FANG S C.Solvability of variational inequality problems[J].Journal of Optimization Theory and Applications,2004,122(3):501-520. DOI:10.1023/B:JOTA.0000042593.74934.b7. [8] HE Yiran.The Tikhonov regularization method for set-valued variational inequalities[J]. Abstract and Applied Analysis,2012,2012:172061.DOI:10.1155/2012/172061. [9] 付冬梅,何诣然. 广义混合变分不等式的Tikhonov正则化方法[J].四川师范大学学报(自然科学版),2014,37(1): 12-17.DOI:10.3969/j.issn.1001-8395.2014.01.003. [10] LI Fenglian,HE Yiran. Solvability of a perturbed variational inequality[J]. Pacific Journal of Optimization,2014,10(1): 105-111. [11] 李择均,孙淑芹. 一个扰动变分不等式的可解性[J]. 数学物理学报,2016,36A(3): 473-480. [12] ZHONG Renyou,HUANG Nanjing. Stability analysis for Minty mixed variational inequality in reflexive Banach spaces[J]. Journal of Optimization Theory and Applications,2010,147(3): 454-472. DOI:10.1007/s10957-010-9732-z. [13] 殷洪友,徐成贤,张忠秀. F-互补问题及其与极小元问题的等价性[J]. 数学学报,2001,44(4): 679-686. [14] TANG Guoji,HUANG Nanjing. Existence theorems of the variational-hemivariational inequalities[J]. Journal of Global Optimization,2013,56(2): 605-622. DOI:10.1007/s10898-012-9884-5. [15] TANG Guoji,WANG Xing,WANG Zhongbao. Existence of variational quasi-hemivariational inequalities involving a set-valued operatorand a nonlinear term[J]. Optimization Letters,2015,9(1): 75-90. DOI:10.1007/s11590-014-0739-5. [16] TANG Guoji,ZHOU Liwen,HUANG Nanjing. Existence results for a class of hemivariational inequality problems on Hadamard manifolds[J]. Optimization,2016,65(7): 1451-1461. DOI:10.1080/02331934.2016.1147036. [17] AUBIN J P,FRANKOWSKA H. Set-valued analysis[M]. Basel: Birkhuser, 2008. [18] KONNOV I V,VOLOTSKAYA E O. Mixed variational inequalities and economics equilibrium problems[J]. Journal of Applied Mathematics,2002,2(6): 289-314. DOI:10.1155/S1110757X02106012. [19] KONNOV I V. Combined relaxation methods for variational inequalities[M]. Berlin: Springer-Verlag,2001. [20] KONNOV I V. Mathematics in science and engineering volume 120: equilibrium models and variational inequalities[M]. Amsterdam: Elsevier,2007. |
[1] | ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85. |
[2] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
[3] | DAI Jingyu, ZHANG Xueliang, DENG Minyi, TAN Huili. Effect of Position Perturbation for Spiral Waves in Excitable Media [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 8-14. |
[4] | ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44. |
|