Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (1): 76-83.doi: 10.16088/j.issn.1001-6600.2018.01.010

Previous Articles     Next Articles

Solvability for Generalized Mixed Variational Inequalities with Perturbation

TANG Guoji1*,ZHAO Ting2,HE Dengxu1   

  1. 1.School of Science,Guangxi University for Nationalities,Nanning Guangxi 530006,China;
    2.Southwest Jiaotong University Hope College,Chengdu Sichuan 610405,China
  • Received:2017-05-30 Online:2018-01-20 Published:2018-07-17

Abstract: The existence of solutions for a generalized mixed variational inequality with perturbation is investigated in this paper. Two perturbed ways of a set-valued mapping are introduced: one is perturbed by a continuous and single-valued mapping,and the other is perturbed by a vector in the interior of the barrier cone of the constrained set. Under rather weak conditions, it is shown that the generalized mixed variational inequality perturbed by two ways mentioned above has a solution. The main results may be used in some price equilibrium model in the field of economics, which generalize and improve some known results.

Key words: mixed variational inequality, perturbation, existence, coercivity condition

CLC Number: 

  • O221.2
[1] 张石生.变分不等式及其相关问题[M].重庆: 重庆出版社,2008.
[2] BIANCHI M,HADJISAVVAS N,SCHAIBLE S.Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities[J].Journal of Optimization Theory and Applications,2004,122(1):1-17. DOI:10.1023/B:JOTA.0000041728.12683.89.
[3] BIANCHI M,PINI R. Coercivity conditions for equilibrium problems[J]. Journal of Optimization Theory and Applications,2005,124(1): 79-92. DOI:10.1007/s10957-004-6466-9.
[4] DANIILIDIS A,HADJISAVVAS N. Coercivity conditions and variational inequalities[J]. Mathematical Programming,1999,86(2):433-438. DOI:10.1007/s101070050097.
[5] FACCHINEI F,PANG Jongshi.Finite-Dimensional variational inequalities and complementarity problems[M]. New York:Springer-Verlag,2003. DOI:10.1007/b97543.
[6] FAN Jianghua,WANG Xiaoguo.Solvability of generalized variational inequality problems for unbounded sets in reflexive Banach spaces[J].Journal of Optimization Theory and Applications,2009,143(1):59-74. DOI:10.1007/s10957-009-9556-x.
[7] HAN J,HUANG Z H,FANG S C.Solvability of variational inequality problems[J].Journal of Optimization Theory and Applications,2004,122(3):501-520. DOI:10.1023/B:JOTA.0000042593.74934.b7.
[8] HE Yiran.The Tikhonov regularization method for set-valued variational inequalities[J]. Abstract and Applied Analysis,2012,2012:172061.DOI:10.1155/2012/172061.
[9] 付冬梅,何诣然. 广义混合变分不等式的Tikhonov正则化方法[J].四川师范大学学报(自然科学版),2014,37(1): 12-17.DOI:10.3969/j.issn.1001-8395.2014.01.003.
[10] LI Fenglian,HE Yiran. Solvability of a perturbed variational inequality[J]. Pacific Journal of Optimization,2014,10(1): 105-111.
[11] 李择均,孙淑芹. 一个扰动变分不等式的可解性[J]. 数学物理学报,2016,36A(3): 473-480.
[12] ZHONG Renyou,HUANG Nanjing. Stability analysis for Minty mixed variational inequality in reflexive Banach spaces[J]. Journal of Optimization Theory and Applications,2010,147(3): 454-472. DOI:10.1007/s10957-010-9732-z.
[13] 殷洪友,徐成贤,张忠秀. F-互补问题及其与极小元问题的等价性[J]. 数学学报,2001,44(4): 679-686.
[14] TANG Guoji,HUANG Nanjing. Existence theorems of the variational-hemivariational inequalities[J]. Journal of Global Optimization,2013,56(2): 605-622. DOI:10.1007/s10898-012-9884-5.
[15] TANG Guoji,WANG Xing,WANG Zhongbao. Existence of variational quasi-hemivariational inequalities involving a set-valued operatorand a nonlinear term[J]. Optimization Letters,2015,9(1): 75-90. DOI:10.1007/s11590-014-0739-5.
[16] TANG Guoji,ZHOU Liwen,HUANG Nanjing. Existence results for a class of hemivariational inequality problems on Hadamard manifolds[J]. Optimization,2016,65(7): 1451-1461. DOI:10.1080/02331934.2016.1147036.
[17] AUBIN J P,FRANKOWSKA H. Set-valued analysis[M]. Basel: Birkhuser, 2008.
[18] KONNOV I V,VOLOTSKAYA E O. Mixed variational inequalities and economics equilibrium problems[J]. Journal of Applied Mathematics,2002,2(6): 289-314. DOI:10.1155/S1110757X02106012.
[19] KONNOV I V. Combined relaxation methods for variational inequalities[M]. Berlin: Springer-Verlag,2001.
[20] KONNOV I V. Mathematics in science and engineering volume 120: equilibrium models and variational inequalities[M]. Amsterdam: Elsevier,2007.
[1] ZHU Yaping, QU Guorong, FAN Jianghua. The Existence of Solutions for Quasi-variational Inequalities by Using the Fixed Point Index Approach [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 79-85.
[2] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[3] DAI Jingyu, ZHANG Xueliang, DENG Minyi, TAN Huili. Effect of Position Perturbation for Spiral Waves in Excitable Media [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 8-14.
[4] ZHANG Mei-yue. Some New Results for the Electron Beams Focusing System Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!