Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (1): 84-87.doi: 10.16088/j.issn.1001-6600.2018.01.011

Previous Articles     Next Articles

Notes on Frobenius Groups

LU Jiakuan*,LIU Xuexia,QIN Xueqing   

  1. College of Mathematics and Statistics,Guangxi Normal University,Guilin Guangxi 541006,China
  • Received:2017-07-25 Online:2018-01-20 Published:2018-07-17

Abstract: In this paper,a character theoretic condition characterizing finite Frobenius groups is obtained by using the relationship between the actions of finite groups on its irreducible characters and conjugacy classes. Furthermore,the following two results are obtained by using the structure of a special Frobenius group and the character theory of normal subgroups: ①If G is a finite solvable group,and every χ∈Irrm(G) is quasi-primitive,then G is abelian. ②If G is an M-group,and l=dl(G),the derived length of G,then G is a relative M-group with respect to G(l-1).

Key words: Frobenius groups, irreducible monomial character, solvable groups

CLC Number: 

  • O152.1
[1] BALLESTER-BOLINCHES A,ESTEBAN-ROMERO R,LU Jiakuan. On finite groups with many supersoluble subgroups[J]. Archiv der Mathematik,2017,109(1):3-8. DOI:10.1007/s00013-017-1041-4.
[2] 钟祥贵,丁锐芳,凌思敏. 非次正规子群共轭类数对有限群结构的影响[J]. 广西师范大学学报(自然科学版),2017,35(1):44-48. DOI:10.16088 /j.issn.1001-6600.2017.01.007.
[3] FENG Aifang,LIU Zuhua. Finite groups having exactly two conjugate classes of non-subnormal subgroups[J]. Communications in Algebra,2015,43(9):3840-3847.DOI:10.1080/00927872.2014.924126.
[4] 卢家宽,邱燕燕. 子群弱s-可补性对有限群可解性的影响[J]. 广西师范大学学报(自然科学版),2017,35(1):49-52. DOI:10.16088/j.issn.1001-6600.2017.01.008.
[5] 徐明曜. 有限群导引(上)[M]. 北京:科学出版社,1993.
[6] ISAACS I M. Character theory of finite groups[M].Providence,RI:AMS Chelsea Publishing,2006.
[7] 杨纯富. 关于Frobenius群的一个特征标刻划[J]. 西南师范大学学报(自然科学版),2001,26(2):129-131. DOI:10.13718/j.cnki.xsxb.2001.02.003.
[8] 张胜利. Frobenius群的若干刻划[D]. 厦门:厦门大学,2008.
[9] PANG Linna,LU Jiakuan. Finite groups and degrees of irreducible monomial characters[J]. Journal of Algebra and Its Applications,2016,15(4):1650073. DOI:10.1142/S0219498816500730.
[10] QIAN Guohua,YANG Yong. Permutation characters in finite solvable groups[J]. Communications in Algebra,2018,46(1):167-175. DOI:10.1080/00927872.2017.1316856.
[1] WU Xianghua, ZHONG Xianggui. Influence of NS*-permutable Subgroups on the Structure of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 42-47.
[2] SUN Yuqing, LU Jiakuan. Influence of Self-centralizing Subgroups on the Structure of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 48-55.
[3] ZHONG Xianggui, DING Ruifang, LING Simin. Influence of the Number of Conjugacy Classes of Nonsubnormal Subgroups on the Structure of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 44-48.
[4] PANG Lin-na, QIU Yan-yan, LU Jia-kuan. On Some Sufficent Conditions of p-Nilpotency of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 64-66.
[5] ZHONG Xiang-gui, LIAO Shu-hua, LI Ming-hua, TAN Chun-gui, CHEN Xiao-xiang. Maximal Supersolvable Subgroups and Supersolubility of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 44-47.
[6] LIANG Deng-feng, YU Xin-yan, QIN Le-yang. Sovable Groups with Irreducible Character Degrees Graphs Having a Kind of Connected Components [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 21-25.
[7] LU Jia-kuan, MENG Wei. On π-quasinormal Subgroup of Finite Groups [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 35-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!