Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (2): 62-70.doi: 10.16088/j.issn.1001-6600.2020031601
Previous Articles Next Articles
WU Lei1*, YANG Zhi 2, ZHANG Lei 1, BAI Kezhao3
CLC Number:
[1] WANG D D,ZHANG B,QIU D Y,et al.Stability analysis of the coupled synchronous reluctance motor drives[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2017,64(2):196-200. [2] 余红英,赵少雄,杨臻.同步磁阻电机自适应混沌同步控制仿真研究[J].计算机测量与控制,2016,24(11):67-70. [3] 吴雷,马姝靓,肖华鹏,等.基于反馈线性化法的同步磁阻电机跟踪控制[J].广西师范大学学报(自然科学版),2017,35(4):10-16. [4] 吴雷,阳丽,李啟尚,等.基于小增益定理的同步磁阻电机混沌控制[J].广西师范大学学报(自然科学版),2019,37(2):44-51. [5] 熊林云,王杰.永磁同步电机电能质量分数阶滑模控制[J].中国电机工程学报,2019,39(10):3065-3075. [6] LI C L,YU S M,LUO X S.Fractional-order permanent magnet synchronous motor and its adaptive chaotic control[J].Chinese Physics B,2012,21(10):100506. [7] 刘辉昭,陈晓霞.分数阶同步磁阻电机的混沌与控制[J].河南师范大学学报(自然科学版),2017,45(4):47-52,110. [8] LUO S H,GAO R Z.Chaos control of the permanent magnet synchronous motor with time-varying delay by using adaptive sliding mode control based on DSC[J].Journal of the Franklin Institute,2018,355(10):4147-4163. [9] RAJAGOPAL K,NAZARIMEHR F,KARTHIKEYAN A,et al.Fractional order synchronous reluctance motor:analysis,chaos control and FPGA implementation[J].Asian Journal of Control,2018,20(5):1979-1993. [10] 赵江波,陈颖慧,王军政.基于分数阶的电动轮足式机器人腿部阻抗控制研究[J].北京理工大学学报,2019,39(2):187-192. [11] 王荣林,陆宝春,侯润民,等.交流伺服系统分数阶PID改进型自抗扰控制[J].中国机械工程,2019,30(16):1989-1995. [12] 刘红艳,周彦,母三民.分数阶模糊自抗扰的机器人手臂跟踪控制[J].控制工程,2019,26(5):892-897. [13] 徐群伟,吴俊,吕文韬,等.基于双分数阶快速重复控制的有源电力滤波器电流控制策略[J].电工技术学报,2019,34(增刊1):300-311. [14] 吴春梅.面向分数阶混沌系统线性反馈同步控制方法[J].控制工程,2019,26(5):898-902. [15] 鲜永菊,夏诚,钟德,等.具有共存吸引子的混沌系统及其分数阶系统的镇定[J].控制理论与应用,2019,36(2):262-270. [16] TRIGEASSOU J C,MAAMRI N,SABATIER J,et al.A Lyapunov approach to the stability of fractional differential equations[J].Signal Processing,2011,91(3):437-445. [17] CHAREF A,SUN H H.TSAO Y Y,et al.Fractal system as represented by singularity function[J].IEEE Transactions on Automatic Control,1992,37(9):1465-1470. [18] DIETHELM K,FORD N J,FREED A D.A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29(1/2/3/4):3-22. [19] DIETHELM K,FORD N J.Analysis of fractional differential equations[J].Journal of Mathematical Analysis and Applications,2002,265(2):229-248. [20] CAFAGNA D,GRASSI G.Bifurcation and chaos in the frational order Chen system via a time domain apporch[J].International Journal of Bifurcation and Chaos,2008,18(7):1845-1863. [21] CAFAGNA D,GRASSI G.Hyperchaos in the frational-order RÖssler system with lowest-order[J].International Journal of Bifurcation and Chaos,2009,19(1):339-347. [22] 贺少波,孙克辉,王会海.分数阶混沌系统的Adomian分解法求解及其复杂性分析[J].物理学报,2014,63(3):030502. [23] GOTTWALD G A,MELBOURNE I.Testing for chaos in deterministic systems with noise[J].Physica D:Nonlinear Phenomena,2005,212(1/2):100-110. |
[1] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
[2] | WU Lei, YANG Li, LI Qishang, XIAO Huapeng. Chaos Control of Synchronous Reluctance Motor Based on Small Gain Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 44-51. |
[3] | TANG Tang,LUO Xiaoshu,Lü Wande,LIU Xin. Sliding Mode Active Disturbance Rejection Control of Quadrotor Unmanned Aerial Vehicle [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 56-62. |
[4] | WU Lei, MA Shujing, XIAO Huapeng, TANG Wen. Tracking Control of Synchronous Reluctance Motor Basedon Feedback Linearization Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 10-16. |
[5] | WU Lei,YANG Li,GUO Pengxiao. Feedback Linearization Control of Rucklidge System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 21-27. |
[6] | XU Sheng-zhou, XU Xiang-yang, HU Huai-fei, LI Bo. Left Ventricle MRI Segmentation Based on Developed Dynamic Programming [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 35-41. |
[7] | KANG Yun-lian, LIU Long-sheng, ZHAO Jun-ling. Distributional Chaotic Property of the Factor System of Symbolic Dynamical System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 66-70. |
[8] | LIU Jun-xian, PEI Qi-ming, QIN Zong-ding, JIANG Yu-ling. Study of the Lorenz Equations in a New Parameter Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 1-12. |
[9] | ZHAO Wei-qi, LIANG Jia-rong, LI Xia. Finite-time Terminal Sliding Mode Control for Singular Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 73-78. |
[10] | GAO Jun-fen, HU Wei-ping. Recognition and Study of Pathological Voices Based on NonlinearDynamics Using GMM [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 5-8. |
[11] | LI Yong, JIA Zhen. Applications of Discrete Chaotic Systems in Secure Communication [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 15-19. |
|