Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (2): 56-62.doi: 10.16088/j.issn.1001-6600.2018.02.008
Previous Articles Next Articles
TANG Tang,LUO Xiaoshu*,Lü Wande,LIU Xin
CLC Number:
[1] XU G, ZHOU M. Modified adaptive flight control of quadrotor based on single neuron PID[C]//IEEE Third International Conference on Information Science and Technology. Piscataway, NJ:IEEE Press, 2013:313-316. [2] TAN L, LU L, JIN G. Attitude stabilization control of a quadrotor helicopter using integral backstepping[C]//International Conference on Automatic Control and Artificial Intelligence. Stevenage: Herts, IET, 2013:573-577. [3] 许喆. 基于SMC的四旋翼无人机抗风扰研究[J].电光与控制, 2017(1):67-71. [4] 刘凯悦, 冷建伟. 基于滑模控制的四旋翼无人机自适应跟踪控制[J].飞行力学, 2017, 35(1):43-47. [5] 王锐, 刘金琨. 基于高增益观测器的四旋翼无人机轨迹跟踪控制[J].飞行力学, 2017, 35(1):39-42. [6] NIU T, XIONG H, ZHAO S. Based on ADRC UAV longitudinal pitching angle control research[C]//Information Technology, Networking, Electronic and Automation Control Conference. Piscataway, NJ:IEEE Press, 2016:21-25. [7] LI J, LI R, ZHENG H. Quadrotor modeling and control based on linear active disturbance rejection control[C]//Control Conference. Piscataway, NJ:IEEE Press, 2016:10651-10656. [8] 窦景欣, 孔祥希, 闻邦椿. 四旋翼姿态的反步滑模自抗扰控制及稳定性[J].东北大学学报(自然科学版), 2016, 37(10):1415-1420. [9] 钟海鑫, 罗晓曙, 赵帅,等. 基于改进精英蚁群系统算法的四旋翼无人机姿态控制研究[J].广西师范大学学报(自然科学版), 2016, 34(4):85-92. [10] 钟海鑫, 丘森辉, 罗晓曙,等. 基于附加惯性项BP神经网络的四旋翼无人机姿态控制研究[J].广西师范大学学报(自然科学版), 2017, 35(2):24-31. [11] XU R, ZGNER . Sliding mode control of a class of underactuated systems[J].Automatica, 2008, 44(1):233. [12] 杜金刚. 基于动态逆方法的飞行控制系统设计与仿真[D].西安:西北工业大学, 2006. [13] BERTRAND S, GU NARD N, HAMEL T, et al. A hierarchical controller for miniature VTOL UAVs: design and stability analysis using singular perturbation theory[J].Control Engineering Practice, 2011, 19(10):1099-1108. [14] 王新华, 陈增强, 袁著祉. 基于扩张观测器的非线性不确定系统输出跟踪[J].控制与决策, 2004, 19(10):1113. [15] SUN J, IOANNOU P A. Robust adaptive control[M]. Upper Saddle River, NJ:Prentice Hall,1995. [16] KHALIL H K. Nonlinear systems[M]. 3rd Ed. Upper Saddle River, NJ: Prentice Hall, 2002. [17] HUANG X, LIN W, YANG B. Global finite-time stabilization of a class of uncertain nonlinear systems[J].Automatica, 2005, 41(5):881-888. [18] WANG X, CHEN Z, YANG G. Finite-time-convergent differentiator based on singular perturbation technique[J].IEEE Transactions on Automatic Control, 2007, 52(9):1731-1737. |
[1] | LIU Xin, LUO Xiaoshu, ZHAO Shulin. Active Disturbance Rejection Control of Three-AxisStabilized Platform Based on BP Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 115-120. |
[2] | TANG Tang, WEI Chengyun, LUO Xiaoshu, QIU Senhui. Study of Seeker Optimization Algorithm with Inertia TermSelf-tuning to Attitude Stability of Quadrotor UAV [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 12-19. |
[3] | WU Lei, MA Shujing, XIAO Huapeng, TANG Wen. Tracking Control of Synchronous Reluctance Motor Basedon Feedback Linearization Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 10-16. |
[4] | ZHAO Wei-qi, LIANG Jia-rong, LI Xia. Finite-time Terminal Sliding Mode Control for Singular Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 73-78. |
|