Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (2): 41-50.doi: 10.16088/j.issn.1001-6600.2020080201
Previous Articles Next Articles
XUE Tao, QIU Senhui *, LU Hao, QIN Xingsheng
CLC Number:
[1] 黄丽明,陈维政,闫宏飞,等.基于循环神经网络和深度学习的股票预测方法[J].广西师范大学学报(自然科学版),2019,37(1):13-22.DOI: 10.16088/j.issn.1001-6600.2019.01.002. [2] SANGVINATSOS A.A random walk down wall street:the time-tested strategy for successful investing[J].Quantitative Finance,2017,17(3):327-330.DOI: 10.1080/14697688.2016.1256598. [3] FARIAS NAZÁRIO R T,E SILVA J L,SOBREIRO V A,et al.A literature review of technical analysis on stock markets[J].The Quarterly Review of Economics and Finance,2017,66:115-126.DOI: 10.1016/j.qref.2017.01.014. [4] LIU J X,SUN T N,LUO Y L,et al.An echo state network architecture based on quantum logic gate and Its optimization[J].Neurocomputing,2020,371:100-107.DOI: 10.1016/j.neucom.2019.09.002. [5] CAO J,LI Z,LI J.Financial time series forecasting model based on CEEMDAN and LSTM[J].Physica A:Statistical Mechanics and Its Applications,2019,519:127-139.DOI: 10.1016/j.physa.2018.11.061. [6] 李晓光,宋宝燕,张昕.基于滑动多窗口的时间序列流趋势变化检测[J].电子学报,2010,38(2):321-326. [7] 章登义,欧阳黜霏,吴文李.针对时间序列多步预测的聚类隐马尔科夫模型[J].电子学报,2014,42(12):2359-2364.DOI: 10.3969/j.issn.0372-2112.2014.12.004. [8] YU Y W,WANG S S,ZHANG L J.Stock price forecasting based on BP neural network model of network public opinion[C]//2017 2nd International Conference on Image,Vision and Computing.Piscataway,NJ:IEEE Press,2017:1058-1062.DOI: 10.1109/ICIVC.2017.7984716. [9] 吕凯晨,闫宏飞,陈翀.基于沪深300成分股的量化投资策略研究[J].广西师范大学学报(自然科学版),2019,37(1):1-12.DOI: 10.16088/j.issn.1001-6600.2019.01.001. [10] OLIVEIRA N,CORTEZ P,AREAL N.The impact of microblogging data for stock market prediction:using twitter to predict returns,volatility,trading volume and survey sentiment indices[J].Expert Systems with Applications,2017,73:125-144.DOI: 10.1016/j.eswa.2016.12.036. [11] 李艳红,贾丽娜,王素格,等.基于动态窗口的微博突发话题检测方法[J].计算机应用与软件,2020,37(5):30-37.DOI: 10.3969/j.issn.1000-386x.2020.05.006. [12] TROIANO L,VILLA E M,LOIA V.Replicating a trading strategy by means of LSTM for financial industry applications[J].IEEE Transactions on Industrial Informatics,2018,14(7):3226-3234.DOI: 10.1109/TII.2018.2811377. [13] BIONDO A E,PLUCHINO A,RAPISARDA A,et al.Are random trading strategies more successful than technical ones?[J].PLoS ONE,2013,8(7):e68344.DOI: 10.1371/journal.pone.0068344. [14] DENG Y,BAO F,KONG Y Y,et al.Deep direct reinforcement learning for financial signal representation and trading[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(3):653-664.DOI: 10.1109/TNNLS.2016.2522401. [15] GREFF K,SRIVASTAVA R K,KOUTNÍK J,et al.LSTM:a search space odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2222-2232.DOI: 10.1109/TNNLS.2016.2582924. [16] LIU J X,ZHANG J L,LUO Y L,et al.Mass spectral substance detections using long short-term memory networks[J].IEEE Access,2019,7:10734-10744.DOI: 10.1109/ACCESS.2019.2891548. [17] FISCHER T,KRAUSS C.Deep learning with long short-term memory networks for financial market predictions[J].European Journal of Operational Research,2018,270(2):654-669.DOI: 10.1016/j.ejor.2017.11.054. [18] CHANG X J,YU Y L,YANG Y,et al.Semantic pooling for complex event analysis in untrimmed videos[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(8):1617-1632.DOI: 10.1109/TPAMI.2016.2608901. [19] PALANGI H,DENG L,SHEN Y L,et al.Deep sentence embedding using long short-term memory networks:analysis and application to information retrieval[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2016,24(4):694-707.DOI: 10.1109/TASLP.2016.2520371. [20] ALLEN F,KARJALAINEN R.Using genetic algorithms to find technical trading rules[J].Journal of Financial Economics,1999,51(2):245-271.DOI: 10.1016/S0304-405X(98)00052-X. [21] PATEL J,SHAH S,THAKKAR P.Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques[J].Expert Systems with Applications,2015,42(1):259-268.DOI: 10.1016/j.eswa.2014.07.040. [22] DIXON M,KLABJAN D,BANG J H.Classification-based financial markets prediction using deep neural networks[J].Algorithmic Finance,2017,6(3/4):67-77.DOI: 10.3233/AF-170176. [23] ARÉVALO A,NIÁO J,HERNÁNDEZ G,et al.High-frequency trading strategy based on deep neural networks[C]//InternationIntelligent Computing Methodologies:12th International Conference,ICIC 2016,Lanzhou,China,August 2-5,2016,Proceedings,Part III.Berlin:Springer,2016:424-436.DOI: 10.1007/978-3-319-42297-8_40. [24] CAI X G,HU S,LIN X L.Feature extraction using restricted Boltzmann machine for stock price prediction[C]//2012 IEEE International Conference on Computer Science and Automation Engineering:Volume 3.Piscataway,NJ:IEEE Press,2012:80-83.DOI: 10.1109/CSAE.2012.6272913. [25] CHEN K,ZHOU Y,DAI F Y.A LSTM-based method for stock returns prediction:a case study of China stock market[C]//2015 IEEE International Conference on Big Data.Piscataway,NJ:IEEE Press,2015:2823-2824.DOI: 10.1109/BigData.2015.7364089. [26] 张金磊,罗玉玲,付强.基于门控循环单元神经网络的金融时间序列预测[J].广西师范大学学报(自然科学版),2019,37(2):82-89.DOI: 10.16088/j.issn.1001-6600.2019.02.010. [27] LIN C S,CHIU S H,LIN T Y.Empirical mode decomposition-based least squares support vector regression for foreign exchange rate forecasting[J].Economic Modelling,2012,29(6):2583-2590.DOI: 10.1016/j.econmod.2012.07.018. [28] SEZER O B,GUDELEK M U,OZBAYOGLU A M.Financial time series forecasting with deep learning:a systematic literature review:2005-2019[J].Applied Soft Computing,2020,90:106181.DOI: 10.1016/j.asoc.2020.106181. [29] LIU J X,SUN T N,LUO Y L,et al.Financial data forecasting using optimized echo state network[C]//Neural Information Processing:25th International Conference,ICONIP 2018,Siem Reap,Cambodia,December 13-16,2018,Proceedings,Part V.Berlin:Springer,2018:138-149.DOI: 10.1007/978-3-030-04221-9_13. |
[1] | YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12. |
[2] | DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40. |
[3] | TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39. |
[4] | ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32. |
[5] | LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63. |
[6] | LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106. |
[7] | ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89. |
[8] | HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22. |
[9] | YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49. |
[10] | YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61. |
[11] | WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88. |
|