Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 233-244.doi: 10.16088/j.issn.1001-6600.2024121501

• Ecology and Environmental Science Research • Previous Articles    

Removal Mechanism of Cadmium Containing Wastewater by Algae-Bacteria Granular Sludge

WANG Xu1, CHEN Wei1*, CAO Liang2, XIA Yingjie1, ZENG Ming1   

  1. 1. School of Urban Construction, Wuhan University of Science and Technology, Wuhan Hubei 430081, China;
    2. Ecological Environment Monitoring and Scientific Research Center, Yangtze Basin Ecological Environment Supervision Administration Bureau, Ministry of Ecology and Environment, Wuhan Hubei 430010, China
  • Received:2024-12-15 Revised:2025-01-26 Published:2025-11-19

Abstract: To explore the application of algae-bacteria granular sludge in the treatment of cadmium-containing wastewater, a photosequence batch reactor (PSBR) was used to treat simulated cadmium-containing wastewater, and the changes of pollutant treatment effect, sludge physicochemical properties, surface functional groups and microbial community structure were observed. The deep removal mechanism in the process of treating cadmium-containing wastewater was analyzed. The experimental results showed that the algae-bacteria granular sludge had a good removal effect on cadmium-containing wastewater, in which the removal rates of COD, TN and Cd2+ reach 88.14%, 76.15% and 93.40%, respectively. The pseudo-second-order kinetic model indicated that the removal of Cd2+ was primarily through chemical adsorption, with EPS playing a crucial role. FTIR and XPS characterization revealed that functional groups such as C—O, C—N, and CO on the sludge surface interact with Cd2+, forming precipitates or complexes, which facilitated chemical adsorption. Under low Cd2+ concentrations, EPS secretion increased from 98.96 mg/g to 144.37 mg/g, demonstrating high resistance to toxicity. However, high Cd2+ concentrations inhibited EPS secretion, compromising particle stability. Microbial community analysis showed that under Cd2+ stress, the abundance of norank_f_Microscillaceae and norank_f_Saprospiraceae increased. These bacteria were major EPS producers, further enhancing EPS secretion and resisting heavy metal toxicity. In summary, algae-bacteria granular sludge exhibits significant removal capabilities for Cd2+, organic matter, and nitrogen and phosphorus, while maintaining particle stability. These findings provide a theoretical foundation and practical guidance for the long-term stable operation of sludge in treating Cd2+-contaminated wastewater.

Key words: wastewater treatment, algae-bacteria granular sludge, cadmium-containing wastewater, adsorption characteristics, mechanism analysis

CLC Number:  X703
[1] 郝吉明, 田金平, 卢琬莹,等. 长江经济带工业园区绿色发展战略研究[J]. 中国工程科学, 2022, 24(1): 155-165. DOI: 10.15302/J-SSCAE-2022.01.017.
[2] 何佳, 时迪, 王贝贝,等. 10种典型重金属在八大流域的生态风险及水质标准评价[J]. 中国环境科学, 2019, 39(7): 2970-2982. DOI: 10.19674/j.cnki.issn1000-6923.2019.0351.
[3] DHOKPANDE S R, DESHMUKH S M, KHANDEKAR A, et al. A review outlook on methods for removal of heavy metal ions from wastewater[J]. Separation and Purification Technology, 2024, 350: 127868.DOI: 10.1016/j.seppur.2024.127868.
[4] YUAN M, CAO H R, SHANG S S, et al. One-step green synthesis of melamine-modified cellulose nanofiber composite aerogels for efficient removal of Pb(Ⅱ) and Cu(Ⅱ): experiments and DFT calculations[J]. International Journal of Biological Macromolecules, 2024, 281: 136305. DOI: 10.1016/j.ijbiomac.2024.136305.
[5] 康得军, 谢丹瑜, 匡帅,等. 活性污泥胞外聚合物对Pb2+和Cu2+的吸附机理[J]. 中国给水排水, 2016, 32(21): 28-33. DOI: 10.19853/j.zgjsps.1000-4602.2016.21.006.
[6] DAI M X, ZHOU G Q, NG H Y, et al. Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(Ⅱ) stress[J]. Journal of Environmental Management, 2019, 250: 109519. DOI: 10.1016/j.jenvman.2019.109519.
[7] REN L X, WANG P F, WANG C, et al. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments[J]. Environmental Pollution, 2017, 220: 274-285. DOI: 10.1016/j.envpol.2016.09.061.
[8] 陈庆峰, 余哲, 黄诗琪,等. 菌藻共生好氧颗粒污泥的分形特征研究[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 163-172. DOI: 10.16088/j.issn.1001-6600.2021082104.
[9] WANG Z W, WANG H X, NIE Q, et al. Pb(Ⅱ) bioremediation using fresh algal-bacterial aerobic granular sludge and its underlying mechanisms highlighting the role of extracellular polymeric substances[J]. Journal of Hazardous Materials, 2023, 444: 130452. DOI: 10.1016/j.jhazmat.2022.130452.
[10] YANG X J, ZHAO Z W, VAN NGUYEN B, et al. Cr(Ⅵ) bioremediation by active algal-bacterial aerobic granular sludge: importance of microbial viability, contribution of microalgae and fractionation of loaded Cr[J]. Journal of Hazardous Materials, 2021, 418: 126342. DOI: 10.1016/j.jhazmat.2021.126342.
[11] YANG X J, ZHAO Z W, ZHANG G H, et al. Insight into Cr(Ⅵ) biosorption onto algal-bacterial granular sludge: Cr(Ⅵ) bioreduction and its intracellular accumulation in addition to the effects of environmental factors[J]. Journal of Hazardous Materials, 2021, 414: 125479. DOI: 10.1016/j.jhazmat.2021.125479.
[12] LI Y Y, DECONINCK T, BARATI B, et al. The effect of cadmium on a semi-self-sustaining microalgal-bacterial granular sludge process for wastewater treatment[J]. Journal of Water Process Engineering, 2024, 60: 105196. DOI: 10.1016/j.jwpe.2024.105196.
[13] ZHANG C, LAIPAN M W, ZHANG L, et al. Capturing effects of filamentous fungi Aspergillus flavus ZJ-1 on microalgae Chlorella vulgaris WZ-1 and the application of their co-integrated fungi-algae pellets for Cu(Ⅱ) adsorption[J]. Journal of Hazardous Materials, 2023, 442: 130105. DOI: 10.1016/j.jhazmat.2022.130105.
[14] 闻倩敏. UASB硫酸盐还原体系处理含镉锌矿山废水的调控及成矿机理研究[D]. 桂林: 桂林电子科技大学, 2022.
[15] WANG S L, JI B, CUI B H, et al. Cadmium-effect on performance and symbiotic relationship of microalgal-bacterial granules[J]. Journal of Cleaner Production, 2021, 282: 125383. DOI: 10.1016/j.jclepro.2020.125383.
[16] ZENG T T, WANG L Q, REN X Y, et al. The effect of quorum sensing on cadmium- and lead-containing wastewater treatment using activated sludge: Removal efficiency, enzyme activity, and microbial community[J]. Environmental Research, 2024, 252: 118835. DOI: 10.1016/j.envres.2024.118835.
[17] 付佳慧, 王威, 邓华,等. 赤泥-聚丙烯酸-羧甲基纤维素水凝胶对水中Pb2+吸附研究[J]. 广西师范大学学报(自然科学版), 2024, 52(5): 150-162. DOI: 10.16088/j.issn.1001-6600.2024030702.
[18] 王威, 邓华, 胡乐宁,等. 赤泥-海藻酸钠水凝胶对水中Pb(Ⅱ)的吸附性能[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 105-115. DOI: 10.16088/j.issn.1001-6600.2022110901.
[19] 郑国权, 秦永丽, 汪晨祥,等. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40-52. DOI: 10.16088/j.issn.1001-6600.2024040303.
[20] YAASHIKAA P R, PALANIVELU J, HEMAVATHY R V. Sustainable approaches for removing toxic heavy metal from contaminated water: a comprehensive review of bioremediation and biosorption techniques[J]. Chemosphere, 2024, 357: 141933. DOI: 10.1016/j.chemosphere.2024.141933.
[21] LI G F, MA W J, CHENG Y F, et al. A spectra metrology insight into the binding characteristics of Cu2+ onto anammox extracellular polymeric substances[J]. Chemical Engineering Journal, 2020, 393: 124800. DOI: 10.1016/j.cej.2020.124800.
[22] YE B H, LUO Y T, HE J Y, et al. Investigation of lead bioimmobilization and transformation by Penicillium oxalicum SL2[J]. Bioresource Technology, 2018, 264: 206-210. DOI: 10.1016/j.biortech.2018.05.066.
[23] KAVITA K, SINGH V K, MISHRA A, et al. Characterisation and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis[J]. Carbohydrate Polymers, 2014, 101: 29-35. DOI: 10.1016/j.carbpol.2013.08.099.
[24] HE Y H, JIANG Z C, ZENG M, et al. Deciphering retention effect of extracellular polymeric substances to typical heavy metals and their interaction with key inner enzymes of Candidatus Kuenenia[J]. Journal of Hazardous Materials, 2024, 477: 135367. DOI: 10.1016/j.jhazmat.2024.135367.
[25] GU S W, LAN C Q. Biosorption of heavy metal ions by green Alga neochloris oleoabundans: effects of metal ion properties and cell wall structure[J]. Journal of Hazardous Materials, 2021, 418: 126336. DOI: 10.1016/j.jhazmat.2021.126336.
[26] ZHANG F, XU W Q, ZHANG L W, et al. Riboflavin as a non-quinone redox mediator for enhanced Cr(VI) removal by Shewanella putrefaciens[J]. Journal of Molecular Liquids, 2022, 351: 118622. DOI: 10.1016/j.molliq.2022.118622.
[27] 吴磊, 张学洪, 李宁杰,等. 胞外聚合物在白腐真菌去除镉过程中的作用[J]. 桂林理工大学学报, 2020, 40(1): 177-181. DOI: 10.3969/j.issn.1674-9057.2020.01.023.
[28] 覃容华, 宿程远, 陆欣雅,等. Cr(Ⅵ)浓度对MFC-颗粒污泥耦合体系运行效能及微生态的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 242-254. DOI: 10.16088/j.issn.1001-6600.2022040403.
[29] 李盈盈, 周璐, 荣宏伟,等. 光照强度对菌藻共生系统处理海产养殖废水的性能影响及微生物群落变化[J]. 净水技术, 2023, 42(8): 117-130. DOI: 10.15890/j.cnki.jsjs.2023.08.015.
[30] LI Q, CHANG J J, LI L F, et al. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils[J]. Science of The Total Environment, 2024, 924: 171399. DOI: 10.1016/j.scitotenv.2024.171399.
[31] YANG F, WANG S, LI H X, et al. Differences in responses of activated sludge to nutrients-poor wastewater: function, stability, and microbial community[J]. Chemical Engineering Journal, 2023, 457: 141247. DOI: 10.1016/j.cej.2022.141247.
[32] NG W L, CHUA A S M, LOW J H, et al. Mixed culture resource recovery from industrial waste glycerin pitch: microbial analysis and production of bio-flocculants extracellular polymeric substances[J]. Chemical Engineering Journal, 2024, 482: 149074. DOI: 10.1016/j.cej.2024.149074.
[33] LIANG D B, GUO W, LI D Y, et al. Enhanced aerobic granulation for treating low-strength wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor by selecting slow-growing organisms and adding carriers[J]. Environmental Research, 2022, 205: 112547. DOI: 10.1016/j.envres.2021.112547.
[34] MISHRA V K, SHUKLA R, SHUKLA P N. Metal uptake potential of four methylotrophic bacterial strains from coal mine spoil, exploring a new possible agent for bioremediation[J]. Environmental Technology & Innovation, 2018, 11: 174-186. DOI: 10.1016/j.eti.2018.05.001.
[35] JIA L X, WU W L, ZHOU Q, et al. New insights on the synergetic removal of nutrients and sulfonamides in solid carbon/manganese ore supported denitrification system: water quality, microbial community and antibiotic resistance genes[J]. Chemical Engineering Journal, 2022, 446: 136992. DOI: 10.1016/j.cej.2022.136992.
[36] ZHU X Z, LEE L W, SONG G Q, et al. Deciphering mono/multivalent draw solute-induced microbial ecology and membrane fouling in anaerobic osmotic membrane bioreactor[J]. Water Research, 2022, 209: 117869. DOI: 10.1016/j.watres.2021.117869.
[1] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LI Hao, HE Bing. Droplet Rebound Behavior on Grooves Surface[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 42 -53 .
[5] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54 -68 .
[6] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[7] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80 -91 .
[8] YI Jianbing, HU Yayi, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 92 -106 .
[9] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[10] JIANG Yunlu, LU Huijie, HUANG Xiaowen. Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 120 -127 .