Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 16-40.doi: 10.16088/j.issn.1001-6600.2024082601
• Review • Previous Articles Next Articles
XIE Wenbin1,2, JIN Junfei1,2, CHEN Zhenfeng3, LU Xing1,2*
| [1] BREGLIO A M, RUSHEEN A E, SHIDE E D, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy[J]. Nature Communications, 2017, 8(1): 1654. DOI: 10.1038/s41467-017-01837-1. [2] SAUNDERS N A, SIMPSON F, THOMPSON E W, et al. Role ofintratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives[J]. EMBO Molecular Medicine, 2012, 4(8): 675-684. DOI: 10.1002/emmm.201101131. [3] LAWRENCE D S. The preparation and in vivo applications of caged peptides and proteins[J]. Current Opinion in Chemical Biology, 2005, 9(6): 570-575. DOI: 10.1016/j.cbpa.2005.09.002. [4] PELLICCIOLI A P, WIRZ J. Photoremovable protecting groups: reaction mechanisms and applications[J]. Photochemical & Photobiological Sciences, 2002, 1(7): 441-458. DOI: 10.1039/b200777k. [5] WEINSTAIN R, SLANINA T, KAND D, et al. Visible-to-NIR-light activated release: from small molecules to nanomaterials[J]. Chemical Reviews, 2020, 120(24): 13135-13272. DOI: 10.1021/acs.chemrev.0c00663. [6] KLÁN P, OLOMEK T, BOCHET C G, et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy[J]. Chemical Reviews, 2013, 113(1): 119-191. DOI: 10.1021/cr300177k. [7] KIM K, PARK H, LIM K M. Phototoxicity: its mechanism and animal alternative test methods[J]. Toxicological Research, 2015, 31(2): 97-104. DOI: 10.5487/TR.2015.31.2.097. [8] GLICKMAN R D. Ultraviolet phototoxicity to the retina[J]. Eye & Contact Lens: Science & Clinical Practice, 2011, 37(4): 196-205. DOI: 10.1097/icl.0b013e31821e45a9. [9] LIM Y T, KIM S, NAKAYAMA A, et al. Selection of quantum dot wavelengths for biomedical assays and imaging[J]. Molecular Imaging, 2003, 2(1): 50-64. DOI: 10.1162/15353500200302163. [10] WEISSLEDER R. A clearer vision for in vivo imaging[J]. Nature Biotechnology, 2001, 19(4): 316-317. DOI: 10.1038/86684. [11] JUZENAS P, JUZENIENE A, KAALHUS O, et al. Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo[J]. Photochemical & Photobiological Sciences, 2002, 1(10): 745-748. DOI: 10.1039/b203459j. [12] ECKARDT T, HAGEN V, SCHADE B, et al. Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic 3′, 5′-monophosphates with fluorescence enhancement[J]. Journal of Organic Chemistry, 2002, 67(3): 703-710. DOI: 10.1021/jo010692p. [13] WANG X H, WANG X Y, JIN S X, et al. Stimuli-responsive therapeutic metallodrugs[J]. Chemical Reviews, 2019, 119(2): 1138-1192. DOI: 10.1021/acs.chemrev.8b00209. [14] 吴睿麒, 梁晓龙. 超声介导药物递送研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 271-285. DOI: 10.16088/j.issn.1001-6600.2022012804. [15] ZHOU Z J, ZHANG L, ZHANG Z R, et al. Advances in photosensitizer-related design for photodynamic therapy[J]. Asian Journal of Pharmaceutical Sciences, 2021, 16(6): 668-686. DOI: 10.1016/j.ajps.2020.12.003. [16] WILSON W R, HAY M P. Targeting hypoxia in cancer therapy[J]. Nature Reviews Cancer, 2011, 11(6): 393-410. DOI: 10.1038/nrc3064. [17] HORBERT R, PINCHUK B, DAVIES P, et al. Photoactivatable prodrugs of antimelanoma agent vemurafenib[J]. ACS Chemical Biology, 2015, 10(9): 2099-2107. DOI: 10.1021/acschembio.5b00174. [18] CHEN Y J, BAI L J, ZHANG P, et al. The development of Ru(II)-based photoactivated chemotherapy agents[J]. Molecules, 2021, 26(18): 5679. DOI: 10.3390/molecules26185679. [19] KAYE W. Near-infrared spectroscopy I. Spectral identification and analytical applications[J].Spectrochimica Acta, 1954, 6(4): 257-287. DOI: 10.1016/0371-1951(54)80011-7. [20] WAGNER P J, KLÁN P. Intramolecular triplet energy transfer in flexible molecules: electronic, dynamic, and structural aspects[J]. Journal of the American Chemical Society, 1999, 121(41): 9626-9635. DOI: 10.1021/ja990224l. [21] FALVEY D E, SUNDARARAJAN C. Photoremovable protecting groups based on electron transfer chemistry[J]. Photochemical & Photobiological Sciences, 2004, 3(9): 831-838. DOI: 10.1039/b406866a. [22] ORMOND A B, FREEMAN H S. Dye sensitizers for photodynamic therapy[J]. Materials, 2013, 6(3): 817-840. DOI: 10.3390/ma6030817. [23] SHEMBEKAR V R, CHEN Y L, CARPENTER B K, et al. A protecting group for carboxylic acids that can be photolyzed by visible light[J]. Biochemistry, 2005, 44(19): 7107-7114. DOI: 10.1021/bi047665o. [24] HUANG Y, DONG R J, ZHU X Y, et al. Photo-responsive polymeric micelles[J]. Soft Matter, 2014, 10(33): 6121-6138. DOI: 10.1039/c4sm00871e. [25] MOFFAT K L, GOON K, MOUTOS F T, et al. Compositecellularized structures created from an interpenetrating polymer network hydrogel reinforced by a 3D woven scaffold[J]. Macromolecular Bioscience, 2018, 18(10): e1800140. DOI: 10.1002/mabi.201800140. [26] HANSEN M J, VELEMA W A, LERCH M M, et al. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems[J]. Chemical Society Reviews, 2015, 44(11): 3358-3377. DOI: 10.1039/c5cs00118h. [27] RUSSELL A G, RAGOUSSI M E, RAMALHO R, et al. Alpha-carboxy-6-nitroveratryl: a photolabile protecting group for carboxylic acids[J]. Journal of Organic Chemistry, 2010, 75(13): 4648-4651. DOI: 10.1021/jo100783v. [28] GIVENS R S, PARK C H. p-Hydroxyphenacyl ATP1: a new phototrigger[J]. Tetrahedron Letters, 1996, 37(35): 6259-6262. DOI: 10.1016/0040-4039(96)01390-1. [29] GIVENS R S, RUBINA M, WIRZ J. Applications of p-hydroxyphenacyl(pHP) and coumarin-4-ylmethyl photoremovable protecting groups[J]. Photochemical & Photobiological Sciences, 2012, 11(3): 472-488. DOI: 10.1039/c2pp05399c. [30] PARK C H, GIVENS R S. New photoactivatedprotecting groups. 6. p-hydroxyphenacyl: a phototrigger for chemical and biochemical probes[J]. Journal of the American Chemical Society, 1997, 119(10): 2453-2463. DOI: 10.1021/ja9635589. [31] GIVENS R S, WEBER J F W, JUNG A H, et al. Newphotoprotecting groups: desyl and p-hydroxyphenacyl phosphate and carboxylate esters[J]. Methods in Enzymology, 1998, 291: 1-29. DOI: 10.1016/S0076-6879(98)91004-7. [32] LUO X J, WU J B, LV T, et al. Synthesis and evaluation of novel O2-derived diazeniumdiolates as photochemical and real-time monitoring nitric oxide delivery agents[J]. Organic Chemistry Frontiers, 2017, 4(12): 2445-2449. DOI: 10.1039/C7QO00695K. [33] GIVENS R S, RUBINA M, WIRZ J. Applications of p-hydroxyphenacyl(pHP) and coumarin-4-ylmethyl photoremovable protecting groups[J]. Photochemical & Photobiological Sciences, 2012, 11(3): 472-488. DOI: 10.1039/c2pp05399c. [34] SCHADE B, HAGEN V, SCHMIDT R, et al. Deactivation behavior and excited-state properties of (coumarin-4-yl) methyl derivatives. 1. photocleavage of (7-methoxycoumarin-4-yl) methyl-caged acids with fluorescence enhancement[J]. The Journal of Organic Chemistry, 1999, 64(25): 9109-9117. DOI: 10.1021/jo9910233. [35] FURUTA T, WANG SS, DANTZKER J L, et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1193-1200. DOI: 10.1073/pnas.96.4.1193. [36] TANG X J, WU Y Y, ZHAO R, et al. Photorelease of pyridines using a metal-free photoremovable protecting group[J]. Angewandte Chemie International Edition, 2020, 59(42): 18386-18389. DOI: 10.1002/anie.202005310. [37] SENDA N, MOMOTAKE A, ARAI T. Synthesis and photocleavage of 7-[{Bis(carboxymethyl) amino} coumarin-4-yl] methyl-caged neurotransmitters[J]. Bulletin of the Chemical Society of Japan, 2007, 80(12): 2384-2388. DOI: 10.1246/bcsj.80.2384. [38] FURUTA T, TAKEUCHI H, ISOZAKI M, et al.Bhc-cNMPs as either water-soluble or membrane-permeant photoreleasable cyclic nucleotides for both one-and two-photon excitation[J]. Chembiochem, 2004, 5(8): 1119-1128. DOI: 10.1002/cbic.200300814. [39] HE J L, HE Y L, WU X, et al. Mesoporous silica-encapsulated gold nanorods for drug delivery/release and two-photon excitation fluorescence imaging to guide synergistic phototherapy and chemotherapy[J]. ACS Applied Bio Materials, 2023, 6(9): 3433-3440. DOI: 10.1021/acsabm.3c00132. [40] SCHMIDT R, GEISSLER D, HAGEN V, et al. Mechanism of photocleavage of (coumarin-4-yl) methyl esters[J]. The Journal of Physical Chemistry A, 2007, 111(26): 5768-5774. DOI: 10.1021/jp071521c. [41] DAVIS M J, KRAGOR C H, REDDIE K G, et al. Substituent effects on the sensitivity of a quinoline photoremovable protecting group to one- and two-photon excitation[J]. Journal of Organic Chemistry, 2009, 74(4): 1721-1729. DOI: 10.1021/jo802658a. [42] ZHU Y, PAVLOS C M, TOSCANO J P, et al. 8-Bromo-7-hydroxyquinoline as a photoremovable protecting group for physiological use: mechanism and scope[J]. Journal of the American Chemical Society, 2006, 128(13): 4267-4276. DOI: 10.1021/ja0555320. [43] KOSOWER N S, KOSOWER E M, NEWTON G L, et al.Bimane fluorescent labels: labeling of normal human red cells under physiological conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(7): 3382-3386. DOI: 10.1073/pnas.76.7.3382. [44] CHAUDHURI A, VENKATESH Y, BEHARA K K, et al. Bimane: a visible light induced fluorescent photoremovable protecting group for the single and dual release of carboxylic and amino acids[J]. Organic Letters, 2017, 19(7): 1598-1601. DOI: 10.1021/acs.orglett.7b00416. [45] BERTRAND B, PASSADOR K, GOZE C, et al. Metal-based BODIPY derivatives as multimodal tools for life sciences[J]. Coordination Chemistry Reviews, 2018, 358: 108-124. DOI: 10.1016/j.ccr.2017.12.007. [46] SHRESTHA P, KAND D, WEINSTAIN R, et al.Meso-methyl BODIPY photocages: mechanisms, photochemical properties, and applications[J]. Journal of the American Chemical Society, 2023, 145(32): 17497-17514. DOI: 10.1021/jacs.3c01682. [47] PETERSON J A, WIJESOORIYA C, GEHRMANN E J, et al. Family of BODIPY photocages cleaved by single photons of visible/near-infrared light[J]. Journal of the American Chemical Society, 2018, 140(23): 7343-7346. DOI: 10.1021/jacs.8b04040. [48] LABRA-VÁZQUEZ P, FLORES-CRUZ R, GALINDO-HERNÁNDEZ A, et al. Tuning the cell uptake and subcellular distribution in BODIPY-carboranyl dyads: an experimental and theoretical study[J]. Chemistry, 2020, 26(69): 16530-16540. DOI: 10.1002/chem.202002600. [49] IMBERTI C, ZHANG P Y, HUANG H Y, et al.New designs for phototherapeutic transition metal complexes[J]. Angewandte Chemie International Edition, 2020, 59(1): 61-73. DOI: 10.1002/anie.201905171. [50] KNOLL J D, ALBANI B A, TURRO C. New Ru(II) complexes for dual photoreactivity: ligand exchange and 1O2 generation[J]. Accounts of Chemical Research, 2015, 48(8): 2280-2287. DOI: 10.1021/acs.accounts.5b00227. [51] ZAYAT L, FILEVICH O, BARALDO L M, et al. Ruthenium polypyridylphototriggers: from beginnings to perspectives[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371(1995): 20120330. DOI: 10.1098/rsta.2012.0330. [52] HOGENKAMP H P. The photolysis of methylcobalamin[J]. Biochemistry, 1966, 5(2): 417-422. DOI: 10.1021/bi00866a005. [53] SHELL T A, LAWRENCE D S. Vitamin B12: a tunable, long wavelength, light-responsive platform for launching therapeutic agents[J]. Accounts of Chemical Research, 2015, 48(11): 2866-2874. DOI: 10.1021/acs.accounts.5b00331. [54] SHELL T A, SHELL J R, RODGERS Z L, et al. Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as light-capturing antennas[J].Angewandte Chemie International Edition, 2014, 53(3): 875-878. DOI: 10.1002/anie.201308816. [55] FEDORYSHIN LL, TAVARES A J, PETRYAYEVA E, et al. Near-infrared-triggered anticancer drug release from upconverting nanoparticles[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13600-13606. DOI: 10.1021/am503039f. [56] KOZLOWSKI P M, GARABATO B D, LODOWSKI P, et al. Photolytic properties of cobalamins: a theoretical perspective[J]. Dalton Transactions, 2016, 45(11): 4457-4470. DOI: 10.1039/C5DT04286K. [57] BAGNATO J D, EILERS A L, HORTON R A, et al. Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin[J]. Journal of Organic Chemistry, 2004, 69(26): 8987-8996. DOI: 10.1021/jo049953w. [58] RENFREW A K, O′NEILL E S, HAMBLEY T W, et al. Harnessing the properties of cobalt coordination complexes for biological application[J]. Coordination Chemistry Reviews, 2018, 375: 221-233. DOI: 10.1016/j.ccr.2017.11.027. [59] BANSAL S S, GOEL M, AQIL F, et al. Advanced drug delivery systems of curcumin for cancer chemoprevention[J]. Cancer Prevention Research, 2011, 4(8): 1158-1171. DOI: 10.1158/1940-6207.CAPR-10-0006. [60] RENFREW A K, BRYCE N S, HAMBLEY T.Cobalt(III) chaperone complexes of curcumin: photoreduction, cellular accumulation and light-selective toxicity towards tumour cells[J]. Chemistry, 2015, 21(43): 15224-15234. DOI: 10.1002/chem.201502702. [61] JANA A, VERMA B K, GARAI A, et al. Mitochondria localizing high-spin iron complexes of curcumin for photo-induced drug release[J].Inorganica Chimica Acta, 2018, 483: 571-578. DOI: 10.1016/j.ica.2018.09.008. [62] DUAN M R, LENG S G, MAO P. Cisplatin in the era of PARP inhibitors and immunotherapy[J]. Pharmacology & Therapeutics, 2024, 258: 108642. DOI: 10.1016/j.pharmthera.2024.108642. [63] BHARGAVA A, VAISHAMPAYAN U N.Satraplatin: leading the new generation of oral platinum agents[J]. Expert Opinion on Investigational Drugs, 2009, 18(11): 1787-1797. DOI: 10.1517/13543780903362437. [64] ZHANG J Z, WEXSELBLATT E, HAMBLEY T W, et al.Pt(IV) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate[J]. Chemical Communications, 2012, 48(6): 847-849. DOI: 10.1039/c1cc16647f. [65] YAO H Z, CHEN S, DENG Z Q, et al. BODI-Pt, a green-light-activatable and carboplatin-basedplatinum(IV) anticancer prodrug with enhanced activation and cytotoxicity[J]. Inorganic Chemistry, 2020, 59(16): 11823-11833. DOI: 10.1021/acs.inorgchem.0c01880. [66] DENG Z Q, WANG N, LIU Y Y, et al. A photocaged, water-oxidizing, and nucleolus-targeted Pt(IV) complex with a distinct anticancer mechanism[J]. Journal of the American Chemical Society, 2020, 142(17): 7803-7812. DOI: 10.1021/jacs.0c00221. [67] UPADHYAY A, NEPALIA A, BERA A, et al. Aplatinum(II) boron-dipyrromethene complex for cellular imaging and mitochondria-targeted photodynamic therapy in red light[J]. Chemistry, an Asian Journal, 2023, 18(21): e202300667. DOI: 10.1002/asia.202300667. [68] RIVORY L P, ROBERT J. Pharmacology ofcamptothecin and its derivatives[J]. Bulletin Du Cancer, 1995, 82(4): 265-285. [69] LIU P L, LI B W, ZHAN C Y, et al. A two-photon-activated prodrug for therapy and drug release monitoring[J]. Journal of Materials Chemistry B, 2017, 5(36): 7538-7546. DOI: 10.1039/c7tb01408b. [70] RAI K R, PETERSON B L, APPELBAUM F R, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia[J]. The New England Journal of Medicine, 2000, 343(24): 1750-1757. DOI: 10.1056/NEJM200012143432402. [71] MADDOX J M, HORAN M, TAFESH L, et al. DECC (dexamethasone, etoposide, chlorambucil,lomustine) as an oral chemotherapy regimen in relapsed and refractory diffuse large B-cell lymphoma[J]. British Journal of Haematology, 2021, 192(3): e92-e94. DOI: 10.1111/bjh.17278. [72] VERSCHOYLE R D, CARTHEW P, HOLLEY J L, et al. The comparative toxicity of chlorambucil and chlorambucil-spermidine conjugate to BALB/c mice[J]. Cancer Letters, 1994, 85(2): 217-222. DOI: 10.1016/0304-3835(94)90278-x. [73] LIU M, MENG J Q, BAO W E, et al. Single-chromophore-based therapeutic agent enables green-light-triggeredchemotherapy and simultaneous photodynamic therapy to cancer cells[J]. ACS Applied Bio Materials, 2019, 2(7): 3068-3076. DOI: 10.1021/acsabm.9b00356. [74] JORDAN M A, WILSON L. Microtubules as a target for anticancer drugs[J]. Nature Reviews Cancer, 2004, 4(4): 253-265. DOI: 10.1038/nrc1317. [75] FROLOVA L V, MAGEDOV I V, ROMERO A E, et al. Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from therigidin family of marine alkaloids[J]. Journal of Medicinal Chemistry, 2013, 56(17): 6886-6900. DOI: 10.1021/jm400711t. [76] VAN RIXEL V H S, RAMU V, AUYEUNG A B, et al. Photo-uncaging of a microtubule-targetedrigidin analogue in hypoxic cancer cells and in a xenograft mouse model[J]. Journal of the American Chemical Society, 2019, 141(46): 18444-18454. DOI: 10.1021/jacs.9b07225. [77] HO T C S, CHAN A H Y, GANESAN A. Thirty years of HDAC inhibitors: 2020 insight and hindsight[J]. Journal of Medicinal Chemistry, 2020, 63(21): 12460-12484. DOI: 10.1021/acs.jmedchem.0c00830. [78] DANIEL K B, SULLIVAN E D, CHEN Y, et al. Dual-mode HDAC prodrug for covalent modification and subsequent inhibitor release[J]. Journal of Medicinal Chemistry, 2015, 58(11): 4812-4821. DOI: 10.1021/acs.jmedchem.5b00539. [79] GRYDER B E, SODJI Q H, OYELERE A K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed[J]. Future Medicinal Chemistry, 2012, 4(4): 505-524. DOI: 10.4155/fmc.12.3. [80] TROELSEN K S, CALDER E DD, SKWARSKA A, et al. Zap-pano: a photocaged prodrug of the KDAC inhibitor panobinostat[J]. ChemMedChem, 2021, 16(24): 3691-3700. DOI: 10.1002/cmdc.202100403. [81] IEDA N, YAMADA S, KAWAGUCHI M, et al. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity[J]. Bioorganic & Medicinal Chemistry, 2016, 24(12): 2789-2793. DOI: 10.1016/j.bmc.2016.04.042. [82] POULIKAKOS P I, SULLIVAN R J, YAEGER R. Molecular pathways and mechanisms of BRAF in cancer therapy[J]. Clinical Cancer Research, 2022, 28(21): 4618-4628. DOI: 10.1158/1078-0432.CCR-21-2138. [83] SHARMA A, SHAH S R, ILLUM H, et al. Vemurafenib: targeted inhibition of mutated BRAF for treatment of advanced melanoma and its potential in other malignancies[J]. Drugs, 2012, 72(17): 2207-2222. DOI: 10.2165/11640870-000000000-00000. [84] KASTENHUBER E R, LOWE S W. Putting p53 in context[J]. Cell, 2017, 170(6): 1062-1078. DOI: 10.1016/j.cell.2017.08.028. [85] ITALIANO A, MILLER W H Jr, BLAY J Y, et al. Phase I study of daily and weekly regimens of the orally administered MDM2 antagonistidasanutlin in patients with advanced tumors[J]. Investigational New Drugs, 2021, 39(6): 1587-1597. DOI: 10.1007/s10637-021-01141-2. [86] HANSEN M J, FERINGA F M, KOBAURI P, et al. Photoactivation of MDM2 inhibitors: controlling protein-protein interaction with light[J]. Journal of the American Chemical Society, 2018, 140(41): 13136-13141. DOI: 10.1021/jacs.8b04870. [87] GARTEN A, SCHUSTER S, PENKE M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism[J]. Nature Reviews Endocrinology, 2015, 11(9): 535-546. DOI: 10.1038/nrendo.2015.117. [88] RAVAUD A, CERNY T, TERRET C, et al. Phase istudy and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3 weeks in solid tumours: an ECSG/EORTC study[J]. European Journal of Cancer, 2005, 41(5): 702-707. DOI: 10.1016/j.ejca.2004.12.023. [89] WEI J H, RENFREW A K. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent[J]. Journal of Inorganic Biochemistry, 2018, 179: 146-153. DOI: 10.1016/j.jinorgbio.2017.11.018. [90] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase IIIrandomised, double-blind, placebo-controlled trial[J]. Lancet Oncology, 2009, 10(1): 25-34. DOI: 10.1016/S1470-2045(08)70285-7. [91] TANG WW, CHEN Z Y, ZHANG W L, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 87. DOI: 10.1038/s41392-020-0187-x. [92] LAI Y D, LU N, LUO S L, et al. A photoactivated sorafenib-ruthenium(II) prodrug for resistant hepatocellular carcinoma therapy through ferroptosis and purine metabolism disruption[J]. Journal of Medicinal Chemistry, 2022, 65(19): 13041-13051. DOI: 10.1021/acs.jmedchem.2c00880. [93] WANG H W, UDUKALA D N, SAMARAKOON T N, et al. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases[J]. Photochemical & Photobiological Sciences, 2014, 13(2): 231-240. DOI: 10.1039/c3pp50260k. [94] DE CASTRO M G, BUNT G, WOUTERS F S. Cathepsin B launches an apoptotic exit effort upon cell death-associated disruption of lysosomes[J]. Cell Death Discovery, 2016, 2: 16012. DOI: 10.1038/cddiscovery.2016.12. [95] TOUPIN N P, ARORA K, SHRESTHA P, et al. BODIPY-caged photoactivated inhibitors of cathepsin B flip the light switch on cancer cell apoptosis[J]. ACS Chemical Biology, 2019, 14(12): 2833-2840. DOI: 10.1021/acschembio.9b00711. [96] PANG X C, HE X, QIU Z W, et al. Targeting integrin pathways: mechanisms and advances in therapy[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 1. DOI: 10.1038/s41392-022-01259-6. [97] LI M, WANG Y, LI M W, et al. Integrins as attractive targets for cancer therapeutics[J]. Acta Pharmaceutica Sinica B, 2021, 11(9): 2726-2737. DOI: 10.1016/j.apsb.2021.01.004. [98] ZHANG L Y, WANG P Y, ZHOU X Q, et al. Cyclic ruthenium-peptide conjugates as integrin-targeting phototherapeutic prodrugs for the treatment of brain tumors[J]. Journal of the American Chemical Society, 2023, 145(27): 14963-14980. DOI: 10.1021/jacs.3c04855. [99] CHOW A, PERICA K, KLEBANOFF C A, et al. Clinical implications of T cell exhaustion for cancer immunotherapy[J]. Nature Reviews Clinical Oncology, 2022, 19(12): 775-790. DOI: 10.1038/s41571-022-00689-z. [100] SAMSON N, ABLASSER A. The cGAS-STING pathway and cancer[J]. Nature Cancer, 2022, 3(12): 1452-1463. DOI: 10.1038/s43018-022-00468-w. [101] CHIN E N, YU C G, VARTABEDIAN V F, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic[J]. Science, 2020, 369(6506): 993-999. DOI: 10.1126/science.abb4255. [102] CALDWELL S E, JANOSKO C P, DEITERS A. Development of a light-activated STING agonist[J]. Organic & Biomolecular Chemistry, 2024, 22(2): 302-308. DOI: 10.1039/D3OB01578E. [103] LUQUE-CABAL M, GARCÍA-TEIJIDO P, FERNÁNDEZ-PÉREZ Y, et al. Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it[J]. Clinical Medicine Insights Oncology, 2016, 10(S1): 21-30. DOI: 10.4137/CMO.S34537. [104] COATS S, WILLIAMS M, KEBBLE B, et al. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index[J]. Clinical Cancer Research, 2019, 25(18): 5441-5448. DOI: 10.1158/1078-0432.CCR-19-0272. [105] LI J G, XIAO D, XIE F, et al. Novel antibody-drug conjugate with UV-controlled cleavage mechanism for cytotoxin release[J]. Bioorganic Chemistry, 2021, 111: 104475. DOI: 10.1016/j.bioorg.2020.104475. [106] SCHER H I, BEER T M, HIGANO C S, et al.Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study[J]. The Lancet, 2010, 375(9724): 1437-1446. DOI: 10.1016/S0140-6736(10)60172-9. [107] TREE A, GRIFFIN C, SYNDIKUS I, et al. Nonrandomized comparison of efficacy and side effects of bicalutamide compared with luteinizing hormone-releasing hormone (LHRH) analogs in combination with radiation therapy in the CHHiP trial[J]. International Journal of Radiation Oncology, Biology, Physics, 2022, 113(2): 305-315. DOI: 10.1016/j.ijrobp.2021.12.160. [108] ZHAO J, LIU N N, SUN S C, et al. Light-activated ruthenium (II)-bicalutamide prodrugs for prostate cancer[J]. Journal of Inorganic Biochemistry, 2019, 196: 110684. DOI: 10.1016/j.jinorgbio.2019.03.024. [109] RIZZOLO P, SILVESTRI V, VALENTINI V, et al. Evaluation of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk[J]. Endocrine Connections, 2019, 8(8): 1224-1229. DOI: 10.1530/EC-19-0225. [110] HACHEY A C, FENTON A D, HEIDARY D K, et al. Design of cytochrome P450 1B1 inhibitors via a scaffold-hopping approach[J]. Journal of Medicinal Chemistry, 2023, 66(1): 398-412. DOI: 10.1021/acs.jmedchem.2c01368. [111] GUENGERICH F P. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs[J]. Toxicological Research, 2020, 37(1): 1-23. DOI: 10.1007/s43188-020-00056-z. [112] FOROOZESH M, SRIDHAR J, GOYAL N, et al. Coumarins and P450s, studies reported to-date[J]. Molecules, 2019, 24(8): 1620. DOI: 10.3390/molecules24081620. [113] HAVRYLYUK D, HACHEY A C, FENTON A, et al.Ru(II) photocages enable precise control over enzyme activity with red light[J]. Nature Communications, 2022, 13(1): 3636. DOI: 10.1038/s41467-022-31269-5. [114] GUO Z Q, PARK S, YOON J, et al. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications[J]. Chemical Society Reviews, 2014, 43(1): 16-29. DOI: 10.1039/c3cs60271k. [115] RITSCHEL W A, BRADY M E, TAN H S, et al. Pharmacokinetics of coumarin and its 7-hydroxy-metabolites upon intravenous and peroral administration of coumarin in man[J]. European Journal of Clinical Pharmacology, 1977, 12(6): 457-461. DOI: 10.1007/BF00561066. [116] VÖRÖSLAKOS M, KIM K, SLAGER N, et al.Hecto STAR μLED optoelectrodes for large-scale, high-precision in vivo opto-electrophysiology[J]. Advanced Science, 2022, 9(18): e2105414. DOI: 10.1002/advs.202105414. [117] KIRINO I, FUJITA K, SAKANOUE K, et al. Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid[J]. Scientific Reports, 2020, 10(1): 22017. DOI: 10.1038/s41598-020-79067-7. [118] MANTHE R L, FOY S P, KRISHNAMURTHY N, et al. Tumor ablation and nanotechnology[J]. Molecular Pharmaceutics, 2010, 7(6): 1880-1898. DOI: 10.1021/mp1001944. [119] JIN Y S, LIANG X L, AN Y K, et al. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyperthermia and chemotherapy of cancer[J]. Bioconjugate Chemistry, 2016, 27(12): 2931-2942. DOI: 10.1021/acs.bioconjchem.6b00603. [120] 袁静静, 郑宇钊, 徐晨枫, 等. 非内吞依赖型生物大分子药物胞质递送策略研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 1-8. DOI: 10.16088/j.issn.1001-6600.2023042406. |
| [1] | DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162-172. |
| [2] | SUN Li, CHU Xiangwu, LIU Chunmei, ZHANG Juzheng, CHENG Keguang. Synthesis and Anti-tumor Activities of Ursolic Acid and Glycyrrhetinic Acid-Uridine Conjugates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 87-92. |
| [3] | LIU Guan-yan, CHENG Ke-guang, DENG Sheng-ping, LIU Yan-cheng, CHUXiang-wu, CHEN Jian-hui, MA Lu. Synthesis and Anti-tumor Activity Evaluation of Estradiol Ester Derivatives [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 62-66. |
| [4] | NIE Yue-kun, PAN Cheng-xue, DAI Zhi-kai, SU Gui-fa. Synthesis and Bioactivities of Benzo[c]phenanthridine Derivatives [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 60-66. |
|