Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 16-40.doi: 10.16088/j.issn.1001-6600.2024082601

• Review • Previous Articles     Next Articles

Advances of Photoactivated Prodrugs in Anti-Tumor Therapy

XIE Wenbin1,2, JIN Junfei1,2, CHEN Zhenfeng3, LU Xing1,2*   

  1. 1. Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair (Affiliated Hospital of Guilin Medical University), Guilin Guangxi 541001, China;
    2. Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases (Affiliated Hospital of Guilin Medical University), Guilin Guangxi 541001, China;
    3. State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2024-08-26 Revised:2024-09-14 Online:2025-09-05 Published:2025-08-05

Abstract: Cancer is seriously threatening human health. Chemotherapy, as a common treatment for cancer, often causes serious toxic side effects due to its indiscriminate killing of normal cells. Photo-activated chemotherapy (PACT) is one of the effective methods to reduce the toxic and side effects of drugs. It combines photoremovable groups (PPGs) with inhibitor prodrugs to form photoactivated inhibitor prodrugs, which can be activated by light at specific sites and release inhibitor, so as to achieve accurate targeting of cancer tissues and minimize the toxic and side effects of anti-tumor agents on normal tissues. This review comprehensively covers the basic structures and strategies of photoactivated prodrugs, common PPGs and the important advances for anti-tumor research in recent years. According to the different mechanism of action of these prodrugs, this review introduces cytotoxic, molecular targeting, immune and hormone anti-tumor prodrugs in turn, aiming to provide a new scheme for the precision treatment of cancer.

Key words: photo-activated, prodrugs, photoremovable protecting groups, drugs release, anti-tumor

CLC Number:  R730.53
[1] BREGLIO A M, RUSHEEN A E, SHIDE E D, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy[J]. Nature Communications, 2017, 8(1): 1654. DOI: 10.1038/s41467-017-01837-1.
[2] SAUNDERS N A, SIMPSON F, THOMPSON E W, et al. Role ofintratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives[J]. EMBO Molecular Medicine, 2012, 4(8): 675-684. DOI: 10.1002/emmm.201101131.
[3] LAWRENCE D S. The preparation and in vivo applications of caged peptides and proteins[J]. Current Opinion in Chemical Biology, 2005, 9(6): 570-575. DOI: 10.1016/j.cbpa.2005.09.002.
[4] PELLICCIOLI A P, WIRZ J. Photoremovable protecting groups: reaction mechanisms and applications[J]. Photochemical & Photobiological Sciences, 2002, 1(7): 441-458. DOI: 10.1039/b200777k.
[5] WEINSTAIN R, SLANINA T, KAND D, et al. Visible-to-NIR-light activated release: from small molecules to nanomaterials[J]. Chemical Reviews, 2020, 120(24): 13135-13272. DOI: 10.1021/acs.chemrev.0c00663.
[6] KLÁN P, ŠOLOMEK T, BOCHET C G, et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy[J]. Chemical Reviews, 2013, 113(1): 119-191. DOI: 10.1021/cr300177k.
[7] KIM K, PARK H, LIM K M. Phototoxicity: its mechanism and animal alternative test methods[J]. Toxicological Research, 2015, 31(2): 97-104. DOI: 10.5487/TR.2015.31.2.097.
[8] GLICKMAN R D. Ultraviolet phototoxicity to the retina[J]. Eye & Contact Lens: Science & Clinical Practice, 2011, 37(4): 196-205. DOI: 10.1097/icl.0b013e31821e45a9.
[9] LIM Y T, KIM S, NAKAYAMA A, et al. Selection of quantum dot wavelengths for biomedical assays and imaging[J]. Molecular Imaging, 2003, 2(1): 50-64. DOI: 10.1162/15353500200302163.
[10] WEISSLEDER R. A clearer vision for in vivo imaging[J]. Nature Biotechnology, 2001, 19(4): 316-317. DOI: 10.1038/86684.
[11] JUZENAS P, JUZENIENE A, KAALHUS O, et al. Noninvasive fluorescence excitation spectroscopy during application of 5-aminolevulinic acid in vivo[J]. Photochemical & Photobiological Sciences, 2002, 1(10): 745-748. DOI: 10.1039/b203459j.
[12] ECKARDT T, HAGEN V, SCHADE B, et al. Deactivation behavior and excited-state properties of (coumarin-4-yl)methyl derivatives. 2. Photocleavage of selected (coumarin-4-yl)methyl-caged adenosine cyclic 3′, 5′-monophosphates with fluorescence enhancement[J]. Journal of Organic Chemistry, 2002, 67(3): 703-710. DOI: 10.1021/jo010692p.
[13] WANG X H, WANG X Y, JIN S X, et al. Stimuli-responsive therapeutic metallodrugs[J]. Chemical Reviews, 2019, 119(2): 1138-1192. DOI: 10.1021/acs.chemrev.8b00209.
[14] 吴睿麒, 梁晓龙. 超声介导药物递送研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 271-285. DOI: 10.16088/j.issn.1001-6600.2022012804.
[15] ZHOU Z J, ZHANG L, ZHANG Z R, et al. Advances in photosensitizer-related design for photodynamic therapy[J]. Asian Journal of Pharmaceutical Sciences, 2021, 16(6): 668-686. DOI: 10.1016/j.ajps.2020.12.003.
[16] WILSON W R, HAY M P. Targeting hypoxia in cancer therapy[J]. Nature Reviews Cancer, 2011, 11(6): 393-410. DOI: 10.1038/nrc3064.
[17] HORBERT R, PINCHUK B, DAVIES P, et al. Photoactivatable prodrugs of antimelanoma agent vemurafenib[J]. ACS Chemical Biology, 2015, 10(9): 2099-2107. DOI: 10.1021/acschembio.5b00174.
[18] CHEN Y J, BAI L J, ZHANG P, et al. The development of Ru(II)-based photoactivated chemotherapy agents[J]. Molecules, 2021, 26(18): 5679. DOI: 10.3390/molecules26185679.
[19] KAYE W. Near-infrared spectroscopy I. Spectral identification and analytical applications[J].Spectrochimica Acta, 1954, 6(4): 257-287. DOI: 10.1016/0371-1951(54)80011-7.
[20] WAGNER P J, KLÁN P. Intramolecular triplet energy transfer in flexible molecules: electronic, dynamic, and structural aspects[J]. Journal of the American Chemical Society, 1999, 121(41): 9626-9635. DOI: 10.1021/ja990224l.
[21] FALVEY D E, SUNDARARAJAN C. Photoremovable protecting groups based on electron transfer chemistry[J]. Photochemical & Photobiological Sciences, 2004, 3(9): 831-838. DOI: 10.1039/b406866a.
[22] ORMOND A B, FREEMAN H S. Dye sensitizers for photodynamic therapy[J]. Materials, 2013, 6(3): 817-840. DOI: 10.3390/ma6030817.
[23] SHEMBEKAR V R, CHEN Y L, CARPENTER B K, et al. A protecting group for carboxylic acids that can be photolyzed by visible light[J]. Biochemistry, 2005, 44(19): 7107-7114. DOI: 10.1021/bi047665o.
[24] HUANG Y, DONG R J, ZHU X Y, et al. Photo-responsive polymeric micelles[J]. Soft Matter, 2014, 10(33): 6121-6138. DOI: 10.1039/c4sm00871e.
[25] MOFFAT K L, GOON K, MOUTOS F T, et al. Compositecellularized structures created from an interpenetrating polymer network hydrogel reinforced by a 3D woven scaffold[J]. Macromolecular Bioscience, 2018, 18(10): e1800140. DOI: 10.1002/mabi.201800140.
[26] HANSEN M J, VELEMA W A, LERCH M M, et al. Wavelength-selective cleavage of photoprotecting groups: strategies and applications in dynamic systems[J]. Chemical Society Reviews, 2015, 44(11): 3358-3377. DOI: 10.1039/c5cs00118h.
[27] RUSSELL A G, RAGOUSSI M E, RAMALHO R, et al. Alpha-carboxy-6-nitroveratryl: a photolabile protecting group for carboxylic acids[J]. Journal of Organic Chemistry, 2010, 75(13): 4648-4651. DOI: 10.1021/jo100783v.
[28] GIVENS R S, PARK C H. p-Hydroxyphenacyl ATP1: a new phototrigger[J]. Tetrahedron Letters, 1996, 37(35): 6259-6262. DOI: 10.1016/0040-4039(96)01390-1.
[29] GIVENS R S, RUBINA M, WIRZ J. Applications of p-hydroxyphenacyl(pHP) and coumarin-4-ylmethyl photoremovable protecting groups[J]. Photochemical & Photobiological Sciences, 2012, 11(3): 472-488. DOI: 10.1039/c2pp05399c.
[30] PARK C H, GIVENS R S. New photoactivatedprotecting groups. 6. p-hydroxyphenacyl: a phototrigger for chemical and biochemical probes[J]. Journal of the American Chemical Society, 1997, 119(10): 2453-2463. DOI: 10.1021/ja9635589.
[31] GIVENS R S, WEBER J F W, JUNG A H, et al. Newphotoprotecting groups: desyl and p-hydroxyphenacyl phosphate and carboxylate esters[J]. Methods in Enzymology, 1998, 291: 1-29. DOI: 10.1016/S0076-6879(98)91004-7.
[32] LUO X J, WU J B, LV T, et al. Synthesis and evaluation of novel O2-derived diazeniumdiolates as photochemical and real-time monitoring nitric oxide delivery agents[J]. Organic Chemistry Frontiers, 2017, 4(12): 2445-2449. DOI: 10.1039/C7QO00695K.
[33] GIVENS R S, RUBINA M, WIRZ J. Applications of p-hydroxyphenacyl(pHP) and coumarin-4-ylmethyl photoremovable protecting groups[J]. Photochemical & Photobiological Sciences, 2012, 11(3): 472-488. DOI: 10.1039/c2pp05399c.
[34] SCHADE B, HAGEN V, SCHMIDT R, et al. Deactivation behavior and excited-state properties of (coumarin-4-yl) methyl derivatives. 1. photocleavage of (7-methoxycoumarin-4-yl) methyl-caged acids with fluorescence enhancement[J]. The Journal of Organic Chemistry, 1999, 64(25): 9109-9117. DOI: 10.1021/jo9910233.
[35] FURUTA T, WANG SS, DANTZKER J L, et al. Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1193-1200. DOI: 10.1073/pnas.96.4.1193.
[36] TANG X J, WU Y Y, ZHAO R, et al. Photorelease of pyridines using a metal-free photoremovable protecting group[J]. Angewandte Chemie International Edition, 2020, 59(42): 18386-18389. DOI: 10.1002/anie.202005310.
[37] SENDA N, MOMOTAKE A, ARAI T. Synthesis and photocleavage of 7-[{Bis(carboxymethyl) amino} coumarin-4-yl] methyl-caged neurotransmitters[J]. Bulletin of the Chemical Society of Japan, 2007, 80(12): 2384-2388. DOI: 10.1246/bcsj.80.2384.
[38] FURUTA T, TAKEUCHI H, ISOZAKI M, et al.Bhc-cNMPs as either water-soluble or membrane-permeant photoreleasable cyclic nucleotides for both one-and two-photon excitation[J]. Chembiochem, 2004, 5(8): 1119-1128. DOI: 10.1002/cbic.200300814.
[39] HE J L, HE Y L, WU X, et al. Mesoporous silica-encapsulated gold nanorods for drug delivery/release and two-photon excitation fluorescence imaging to guide synergistic phototherapy and chemotherapy[J]. ACS Applied Bio Materials, 2023, 6(9): 3433-3440. DOI: 10.1021/acsabm.3c00132.
[40] SCHMIDT R, GEISSLER D, HAGEN V, et al. Mechanism of photocleavage of (coumarin-4-yl) methyl esters[J]. The Journal of Physical Chemistry A, 2007, 111(26): 5768-5774. DOI: 10.1021/jp071521c.
[41] DAVIS M J, KRAGOR C H, REDDIE K G, et al. Substituent effects on the sensitivity of a quinoline photoremovable protecting group to one- and two-photon excitation[J]. Journal of Organic Chemistry, 2009, 74(4): 1721-1729. DOI: 10.1021/jo802658a.
[42] ZHU Y, PAVLOS C M, TOSCANO J P, et al. 8-Bromo-7-hydroxyquinoline as a photoremovable protecting group for physiological use: mechanism and scope[J]. Journal of the American Chemical Society, 2006, 128(13): 4267-4276. DOI: 10.1021/ja0555320.
[43] KOSOWER N S, KOSOWER E M, NEWTON G L, et al.Bimane fluorescent labels: labeling of normal human red cells under physiological conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 76(7): 3382-3386. DOI: 10.1073/pnas.76.7.3382.
[44] CHAUDHURI A, VENKATESH Y, BEHARA K K, et al. Bimane: a visible light induced fluorescent photoremovable protecting group for the single and dual release of carboxylic and amino acids[J]. Organic Letters, 2017, 19(7): 1598-1601. DOI: 10.1021/acs.orglett.7b00416.
[45] BERTRAND B, PASSADOR K, GOZE C, et al. Metal-based BODIPY derivatives as multimodal tools for life sciences[J]. Coordination Chemistry Reviews, 2018, 358: 108-124. DOI: 10.1016/j.ccr.2017.12.007.
[46] SHRESTHA P, KAND D, WEINSTAIN R, et al.Meso-methyl BODIPY photocages: mechanisms, photochemical properties, and applications[J]. Journal of the American Chemical Society, 2023, 145(32): 17497-17514. DOI: 10.1021/jacs.3c01682.
[47] PETERSON J A, WIJESOORIYA C, GEHRMANN E J, et al. Family of BODIPY photocages cleaved by single photons of visible/near-infrared light[J]. Journal of the American Chemical Society, 2018, 140(23): 7343-7346. DOI: 10.1021/jacs.8b04040.
[48] LABRA-VÁZQUEZ P, FLORES-CRUZ R, GALINDO-HERNÁNDEZ A, et al. Tuning the cell uptake and subcellular distribution in BODIPY-carboranyl dyads: an experimental and theoretical study[J]. Chemistry, 2020, 26(69): 16530-16540. DOI: 10.1002/chem.202002600.
[49] IMBERTI C, ZHANG P Y, HUANG H Y, et al.New designs for phototherapeutic transition metal complexes[J]. Angewandte Chemie International Edition, 2020, 59(1): 61-73. DOI: 10.1002/anie.201905171.
[50] KNOLL J D, ALBANI B A, TURRO C. New Ru(II) complexes for dual photoreactivity: ligand exchange and 1O2 generation[J]. Accounts of Chemical Research, 2015, 48(8): 2280-2287. DOI: 10.1021/acs.accounts.5b00227.
[51] ZAYAT L, FILEVICH O, BARALDO L M, et al. Ruthenium polypyridylphototriggers: from beginnings to perspectives[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371(1995): 20120330. DOI: 10.1098/rsta.2012.0330.
[52] HOGENKAMP H P. The photolysis of methylcobalamin[J]. Biochemistry, 1966, 5(2): 417-422. DOI: 10.1021/bi00866a005.
[53] SHELL T A, LAWRENCE D S. Vitamin B12: a tunable, long wavelength, light-responsive platform for launching therapeutic agents[J]. Accounts of Chemical Research, 2015, 48(11): 2866-2874. DOI: 10.1021/acs.accounts.5b00331.
[54] SHELL T A, SHELL J R, RODGERS Z L, et al. Tunable visible and near-IR photoactivation of light-responsive compounds by using fluorophores as light-capturing antennas[J].Angewandte Chemie International Edition, 2014, 53(3): 875-878. DOI: 10.1002/anie.201308816.
[55] FEDORYSHIN LL, TAVARES A J, PETRYAYEVA E, et al. Near-infrared-triggered anticancer drug release from upconverting nanoparticles[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13600-13606. DOI: 10.1021/am503039f.
[56] KOZLOWSKI P M, GARABATO B D, LODOWSKI P, et al. Photolytic properties of cobalamins: a theoretical perspective[J]. Dalton Transactions, 2016, 45(11): 4457-4470. DOI: 10.1039/C5DT04286K.
[57] BAGNATO J D, EILERS A L, HORTON R A, et al. Synthesis and characterization of a cobalamin-colchicine conjugate as a novel tumor-targeted cytotoxin[J]. Journal of Organic Chemistry, 2004, 69(26): 8987-8996. DOI: 10.1021/jo049953w.
[58] RENFREW A K, O′NEILL E S, HAMBLEY T W, et al. Harnessing the properties of cobalt coordination complexes for biological application[J]. Coordination Chemistry Reviews, 2018, 375: 221-233. DOI: 10.1016/j.ccr.2017.11.027.
[59] BANSAL S S, GOEL M, AQIL F, et al. Advanced drug delivery systems of curcumin for cancer chemoprevention[J]. Cancer Prevention Research, 2011, 4(8): 1158-1171. DOI: 10.1158/1940-6207.CAPR-10-0006.
[60] RENFREW A K, BRYCE N S, HAMBLEY T.Cobalt(III) chaperone complexes of curcumin: photoreduction, cellular accumulation and light-selective toxicity towards tumour cells[J]. Chemistry, 2015, 21(43): 15224-15234. DOI: 10.1002/chem.201502702.
[61] JANA A, VERMA B K, GARAI A, et al. Mitochondria localizing high-spin iron complexes of curcumin for photo-induced drug release[J].Inorganica Chimica Acta, 2018, 483: 571-578. DOI: 10.1016/j.ica.2018.09.008.
[62] DUAN M R, LENG S G, MAO P. Cisplatin in the era of PARP inhibitors and immunotherapy[J]. Pharmacology & Therapeutics, 2024, 258: 108642. DOI: 10.1016/j.pharmthera.2024.108642.
[63] BHARGAVA A, VAISHAMPAYAN U N.Satraplatin: leading the new generation of oral platinum agents[J]. Expert Opinion on Investigational Drugs, 2009, 18(11): 1787-1797. DOI: 10.1517/13543780903362437.
[64] ZHANG J Z, WEXSELBLATT E, HAMBLEY T W, et al.Pt(IV) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate[J]. Chemical Communications, 2012, 48(6): 847-849. DOI: 10.1039/c1cc16647f.
[65] YAO H Z, CHEN S, DENG Z Q, et al. BODI-Pt, a green-light-activatable and carboplatin-basedplatinum(IV) anticancer prodrug with enhanced activation and cytotoxicity[J]. Inorganic Chemistry, 2020, 59(16): 11823-11833. DOI: 10.1021/acs.inorgchem.0c01880.
[66] DENG Z Q, WANG N, LIU Y Y, et al. A photocaged, water-oxidizing, and nucleolus-targeted Pt(IV) complex with a distinct anticancer mechanism[J]. Journal of the American Chemical Society, 2020, 142(17): 7803-7812. DOI: 10.1021/jacs.0c00221.
[67] UPADHYAY A, NEPALIA A, BERA A, et al. Aplatinum(II) boron-dipyrromethene complex for cellular imaging and mitochondria-targeted photodynamic therapy in red light[J]. Chemistry, an Asian Journal, 2023, 18(21): e202300667. DOI: 10.1002/asia.202300667.
[68] RIVORY L P, ROBERT J. Pharmacology ofcamptothecin and its derivatives[J]. Bulletin Du Cancer, 1995, 82(4): 265-285.
[69] LIU P L, LI B W, ZHAN C Y, et al. A two-photon-activated prodrug for therapy and drug release monitoring[J]. Journal of Materials Chemistry B, 2017, 5(36): 7538-7546. DOI: 10.1039/c7tb01408b.
[70] RAI K R, PETERSON B L, APPELBAUM F R, et al. Fludarabine compared with chlorambucil as primary therapy for chronic lymphocytic leukemia[J]. The New England Journal of Medicine, 2000, 343(24): 1750-1757. DOI: 10.1056/NEJM200012143432402.
[71] MADDOX J M, HORAN M, TAFESH L, et al. DECC (dexamethasone, etoposide, chlorambucil,lomustine) as an oral chemotherapy regimen in relapsed and refractory diffuse large B-cell lymphoma[J]. British Journal of Haematology, 2021, 192(3): e92-e94. DOI: 10.1111/bjh.17278.
[72] VERSCHOYLE R D, CARTHEW P, HOLLEY J L, et al. The comparative toxicity of chlorambucil and chlorambucil-spermidine conjugate to BALB/c mice[J]. Cancer Letters, 1994, 85(2): 217-222. DOI: 10.1016/0304-3835(94)90278-x.
[73] LIU M, MENG J Q, BAO W E, et al. Single-chromophore-based therapeutic agent enables green-light-triggeredchemotherapy and simultaneous photodynamic therapy to cancer cells[J]. ACS Applied Bio Materials, 2019, 2(7): 3068-3076. DOI: 10.1021/acsabm.9b00356.
[74] JORDAN M A, WILSON L. Microtubules as a target for anticancer drugs[J]. Nature Reviews Cancer, 2004, 4(4): 253-265. DOI: 10.1038/nrc1317.
[75] FROLOVA L V, MAGEDOV I V, ROMERO A E, et al. Exploring natural product chemistry and biology with multicomponent reactions. 5. Discovery of a novel tubulin-targeting scaffold derived from therigidin family of marine alkaloids[J]. Journal of Medicinal Chemistry, 2013, 56(17): 6886-6900. DOI: 10.1021/jm400711t.
[76] VAN RIXEL V H S, RAMU V, AUYEUNG A B, et al. Photo-uncaging of a microtubule-targetedrigidin analogue in hypoxic cancer cells and in a xenograft mouse model[J]. Journal of the American Chemical Society, 2019, 141(46): 18444-18454. DOI: 10.1021/jacs.9b07225.
[77] HO T C S, CHAN A H Y, GANESAN A. Thirty years of HDAC inhibitors: 2020 insight and hindsight[J]. Journal of Medicinal Chemistry, 2020, 63(21): 12460-12484. DOI: 10.1021/acs.jmedchem.0c00830.
[78] DANIEL K B, SULLIVAN E D, CHEN Y, et al. Dual-mode HDAC prodrug for covalent modification and subsequent inhibitor release[J]. Journal of Medicinal Chemistry, 2015, 58(11): 4812-4821. DOI: 10.1021/acs.jmedchem.5b00539.
[79] GRYDER B E, SODJI Q H, OYELERE A K. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed[J]. Future Medicinal Chemistry, 2012, 4(4): 505-524. DOI: 10.4155/fmc.12.3.
[80] TROELSEN K S, CALDER E DD, SKWARSKA A, et al. Zap-pano: a photocaged prodrug of the KDAC inhibitor panobinostat[J]. ChemMedChem, 2021, 16(24): 3691-3700. DOI: 10.1002/cmdc.202100403.
[81] IEDA N, YAMADA S, KAWAGUCHI M, et al. (7-Diethylaminocoumarin-4-yl)methyl ester of suberoylanilide hydroxamic acid as a caged inhibitor for photocontrol of histone deacetylase activity[J]. Bioorganic & Medicinal Chemistry, 2016, 24(12): 2789-2793. DOI: 10.1016/j.bmc.2016.04.042.
[82] POULIKAKOS P I, SULLIVAN R J, YAEGER R. Molecular pathways and mechanisms of BRAF in cancer therapy[J]. Clinical Cancer Research, 2022, 28(21): 4618-4628. DOI: 10.1158/1078-0432.CCR-21-2138.
[83] SHARMA A, SHAH S R, ILLUM H, et al. Vemurafenib: targeted inhibition of mutated BRAF for treatment of advanced melanoma and its potential in other malignancies[J]. Drugs, 2012, 72(17): 2207-2222. DOI: 10.2165/11640870-000000000-00000.
[84] KASTENHUBER E R, LOWE S W. Putting p53 in context[J]. Cell, 2017, 170(6): 1062-1078. DOI: 10.1016/j.cell.2017.08.028.
[85] ITALIANO A, MILLER W H Jr, BLAY J Y, et al. Phase I study of daily and weekly regimens of the orally administered MDM2 antagonistidasanutlin in patients with advanced tumors[J]. Investigational New Drugs, 2021, 39(6): 1587-1597. DOI: 10.1007/s10637-021-01141-2.
[86] HANSEN M J, FERINGA F M, KOBAURI P, et al. Photoactivation of MDM2 inhibitors: controlling protein-protein interaction with light[J]. Journal of the American Chemical Society, 2018, 140(41): 13136-13141. DOI: 10.1021/jacs.8b04870.
[87] GARTEN A, SCHUSTER S, PENKE M, et al. Physiological and pathophysiological roles of NAMPT and NAD metabolism[J]. Nature Reviews Endocrinology, 2015, 11(9): 535-546. DOI: 10.1038/nrendo.2015.117.
[88] RAVAUD A, CERNY T, TERRET C, et al. Phase istudy and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3 weeks in solid tumours: an ECSG/EORTC study[J]. European Journal of Cancer, 2005, 41(5): 702-707. DOI: 10.1016/j.ejca.2004.12.023.
[89] WEI J H, RENFREW A K. Photolabile ruthenium complexes to cage and release a highly cytotoxic anticancer agent[J]. Journal of Inorganic Biochemistry, 2018, 179: 146-153. DOI: 10.1016/j.jinorgbio.2017.11.018.
[90] CHENG A L, KANG Y K, CHEN Z D, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase IIIrandomised, double-blind, placebo-controlled trial[J]. Lancet Oncology, 2009, 10(1): 25-34. DOI: 10.1016/S1470-2045(08)70285-7.
[91] TANG WW, CHEN Z Y, ZHANG W L, et al. The mechanisms of sorafenib resistance in hepatocellular carcinoma: theoretical basis and therapeutic aspects[J]. Signal Transduction and Targeted Therapy, 2020, 5(1): 87. DOI: 10.1038/s41392-020-0187-x.
[92] LAI Y D, LU N, LUO S L, et al. A photoactivated sorafenib-ruthenium(II) prodrug for resistant hepatocellular carcinoma therapy through ferroptosis and purine metabolism disruption[J]. Journal of Medicinal Chemistry, 2022, 65(19): 13041-13051. DOI: 10.1021/acs.jmedchem.2c00880.
[93] WANG H W, UDUKALA D N, SAMARAKOON T N, et al. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases[J]. Photochemical & Photobiological Sciences, 2014, 13(2): 231-240. DOI: 10.1039/c3pp50260k.
[94] DE CASTRO M G, BUNT G, WOUTERS F S. Cathepsin B launches an apoptotic exit effort upon cell death-associated disruption of lysosomes[J]. Cell Death Discovery, 2016, 2: 16012. DOI: 10.1038/cddiscovery.2016.12.
[95] TOUPIN N P, ARORA K, SHRESTHA P, et al. BODIPY-caged photoactivated inhibitors of cathepsin B flip the light switch on cancer cell apoptosis[J]. ACS Chemical Biology, 2019, 14(12): 2833-2840. DOI: 10.1021/acschembio.9b00711.
[96] PANG X C, HE X, QIU Z W, et al. Targeting integrin pathways: mechanisms and advances in therapy[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 1. DOI: 10.1038/s41392-022-01259-6.
[97] LI M, WANG Y, LI M W, et al. Integrins as attractive targets for cancer therapeutics[J]. Acta Pharmaceutica Sinica B, 2021, 11(9): 2726-2737. DOI: 10.1016/j.apsb.2021.01.004.
[98] ZHANG L Y, WANG P Y, ZHOU X Q, et al. Cyclic ruthenium-peptide conjugates as integrin-targeting phototherapeutic prodrugs for the treatment of brain tumors[J]. Journal of the American Chemical Society, 2023, 145(27): 14963-14980. DOI: 10.1021/jacs.3c04855.
[99] CHOW A, PERICA K, KLEBANOFF C A, et al. Clinical implications of T cell exhaustion for cancer immunotherapy[J]. Nature Reviews Clinical Oncology, 2022, 19(12): 775-790. DOI: 10.1038/s41571-022-00689-z.
[100] SAMSON N, ABLASSER A. The cGAS-STING pathway and cancer[J]. Nature Cancer, 2022, 3(12): 1452-1463. DOI: 10.1038/s43018-022-00468-w.
[101] CHIN E N, YU C G, VARTABEDIAN V F, et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic[J]. Science, 2020, 369(6506): 993-999. DOI: 10.1126/science.abb4255.
[102] CALDWELL S E, JANOSKO C P, DEITERS A. Development of a light-activated STING agonist[J]. Organic & Biomolecular Chemistry, 2024, 22(2): 302-308. DOI: 10.1039/D3OB01578E.
[103] LUQUE-CABAL M, GARCÍA-TEIJIDO P, FERNÁNDEZ-PÉREZ Y, et al. Mechanisms behind the resistance to trastuzumab in HER2-amplified breast cancer and strategies to overcome it[J]. Clinical Medicine Insights Oncology, 2016, 10(S1): 21-30. DOI: 10.4137/CMO.S34537.
[104] COATS S, WILLIAMS M, KEBBLE B, et al. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index[J]. Clinical Cancer Research, 2019, 25(18): 5441-5448. DOI: 10.1158/1078-0432.CCR-19-0272.
[105] LI J G, XIAO D, XIE F, et al. Novel antibody-drug conjugate with UV-controlled cleavage mechanism for cytotoxin release[J]. Bioorganic Chemistry, 2021, 111: 104475. DOI: 10.1016/j.bioorg.2020.104475.
[106] SCHER H I, BEER T M, HIGANO C S, et al.Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study[J]. The Lancet, 2010, 375(9724): 1437-1446. DOI: 10.1016/S0140-6736(10)60172-9.
[107] TREE A, GRIFFIN C, SYNDIKUS I, et al. Nonrandomized comparison of efficacy and side effects of bicalutamide compared with luteinizing hormone-releasing hormone (LHRH) analogs in combination with radiation therapy in the CHHiP trial[J]. International Journal of Radiation Oncology, Biology, Physics, 2022, 113(2): 305-315. DOI: 10.1016/j.ijrobp.2021.12.160.
[108] ZHAO J, LIU N N, SUN S C, et al. Light-activated ruthenium (II)-bicalutamide prodrugs for prostate cancer[J]. Journal of Inorganic Biochemistry, 2019, 196: 110684. DOI: 10.1016/j.jinorgbio.2019.03.024.
[109] RIZZOLO P, SILVESTRI V, VALENTINI V, et al. Evaluation of CYP17A1 and CYP1B1 polymorphisms in male breast cancer risk[J]. Endocrine Connections, 2019, 8(8): 1224-1229. DOI: 10.1530/EC-19-0225.
[110] HACHEY A C, FENTON A D, HEIDARY D K, et al. Design of cytochrome P450 1B1 inhibitors via a scaffold-hopping approach[J]. Journal of Medicinal Chemistry, 2023, 66(1): 398-412. DOI: 10.1021/acs.jmedchem.2c01368.
[111] GUENGERICH F P. A history of the roles of cytochrome P450 enzymes in the toxicity of drugs[J]. Toxicological Research, 2020, 37(1): 1-23. DOI: 10.1007/s43188-020-00056-z.
[112] FOROOZESH M, SRIDHAR J, GOYAL N, et al. Coumarins and P450s, studies reported to-date[J]. Molecules, 2019, 24(8): 1620. DOI: 10.3390/molecules24081620.
[113] HAVRYLYUK D, HACHEY A C, FENTON A, et al.Ru(II) photocages enable precise control over enzyme activity with red light[J]. Nature Communications, 2022, 13(1): 3636. DOI: 10.1038/s41467-022-31269-5.
[114] GUO Z Q, PARK S, YOON J, et al. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications[J]. Chemical Society Reviews, 2014, 43(1): 16-29. DOI: 10.1039/c3cs60271k.
[115] RITSCHEL W A, BRADY M E, TAN H S, et al. Pharmacokinetics of coumarin and its 7-hydroxy-metabolites upon intravenous and peroral administration of coumarin in man[J]. European Journal of Clinical Pharmacology, 1977, 12(6): 457-461. DOI: 10.1007/BF00561066.
[116] VÖRÖSLAKOS M, KIM K, SLAGER N, et al.Hecto STAR μLED optoelectrodes for large-scale, high-precision in vivo opto-electrophysiology[J]. Advanced Science, 2022, 9(18): e2105414. DOI: 10.1002/advs.202105414.
[117] KIRINO I, FUJITA K, SAKANOUE K, et al. Metronomic photodynamic therapy using an implantable LED device and orally administered 5-aminolevulinic acid[J]. Scientific Reports, 2020, 10(1): 22017. DOI: 10.1038/s41598-020-79067-7.
[118] MANTHE R L, FOY S P, KRISHNAMURTHY N, et al. Tumor ablation and nanotechnology[J]. Molecular Pharmaceutics, 2010, 7(6): 1880-1898. DOI: 10.1021/mp1001944.
[119] JIN Y S, LIANG X L, AN Y K, et al. Microwave-triggered smart drug release from liposomes co-encapsulating doxorubicin and salt for local combined hyperthermia and chemotherapy of cancer[J]. Bioconjugate Chemistry, 2016, 27(12): 2931-2942. DOI: 10.1021/acs.bioconjchem.6b00603.
[120] 袁静静, 郑宇钊, 徐晨枫, 等. 非内吞依赖型生物大分子药物胞质递送策略研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 1-8. DOI: 10.16088/j.issn.1001-6600.2023042406.
[1] DU Libo, LI Jinyu, ZHANG Xiao, LI Yonghong, PAN Weidong. Chemical Constituents and Biological Activity from the Bark of Toona ciliata var. pubescens [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 162-172.
[2] SUN Li, CHU Xiangwu, LIU Chunmei, ZHANG Juzheng, CHENG Keguang. Synthesis and Anti-tumor Activities of Ursolic Acid and Glycyrrhetinic Acid-Uridine Conjugates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 87-92.
[3] LIU Guan-yan, CHENG Ke-guang, DENG Sheng-ping, LIU Yan-cheng, CHUXiang-wu, CHEN Jian-hui, MA Lu. Synthesis and Anti-tumor Activity Evaluation of Estradiol Ester Derivatives [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 62-66.
[4] NIE Yue-kun, PAN Cheng-xue, DAI Zhi-kai, SU Gui-fa. Synthesis and Bioactivities of Benzo[c]phenanthridine Derivatives [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 60-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .