Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (5): 1-15.doi: 10.16088/j.issn.1001-6600.2024090601

• Review •     Next Articles

Recent Advances on the Study of Clean Energy Forecasting and Consumption Analysis Model

CHENG Yuanlin1, YU Hu1, ZHANG Shu1, LIAO Xingwei1, ZHANG Xiao2, ZHANG Yi1*, LIU Changhui2*   

  1. 1. China Energy Engineering Group Hunan Electric Power Designing Institute Co., Ltd., Changsha Hunan 410007, China;
    2. School of Low-Carbon Energy and Power Engineering, China University of Mining & Technology, Xuzhou Jiangsu 221116, China
  • Received:2024-09-06 Revised:2024-11-19 Online:2025-09-05 Published:2025-08-05

Abstract: Accurate power prediction of clean energy generation is the key to realize the efficient utilization of clean energy. However, a variety of factors lead to drastic fluctuations in clean energy power generation, which brings great challenges to power prediction. In view of the current demand for large-scale grid connection of clean energy, the research significance of clean energy power generation prediction models and their classification are discussed from multiple perspectives, and the latest applications of artificial intelligence technology in the field of clean energy power generation prediction, including traditional machine learning, deep learning and combinatorial methods, are reviewed, compared and summarized. In addition, the key factors affecting clean energy access are analyzed in depth, and the technical development of clean energy consumption analysis models is discussed, with different focuses and development directions from those of prediction models elaborated. Finally, the future development trend of clean energy prediction and consumption analysis models and their increasing significance are discussed.

Key words: clean energy, power predicting, model prediction, consumption, double-carbon goal

CLC Number:  TK-9
[1] WANG J X, CHEN L D, TAN Z F, et al. Inherent spatiotemporal uncertainty of renewable power in China[J]. Nature Communications, 2023, 14(1): 5379. DOI: 10.1038/s41467-023-40670-7.
[2] 宋敏, 占飞. 我国水能开发现状及发展机遇[J]. 科技创新与应用, 2023,13(19): 25-28. DOI: 10.19981/j.CN23-1581/G3.2023.19.005.
[3] 闫文文, 文中, 王爽, 等. 基于AA-CAES电站和综合需求响应的供暖期弃风消纳策略[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 55-68. DOI: 10.16088/j.issn.1001-6600.2023050805.
[4] 陈禹, 陈磊, 张怡, 等. 基于QMD-LDBO-BiGRU的风速预测模型[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 38-57. DOI: 10.16088/j.issn.1001-6600.2024062402.
[5] 高贵刚. 清洁能源风光发电预测技术进展综述[J]. 电工技术, 2022(20): 49-52. DOI: 10.19768/j.cnki.dgjs.2022.20.016.
[6] 董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49(7): 2938-2951. DOI: 10.13336/j.1003-6520.hve.20220974.
[7] 冉靖, 张智刚, 梁志峰, 等. 风电场风速和发电功率预测方法综述[J]. 数理统计与管理, 2020, 39(6): 1045-1059. DOI: 10.13860/j.cnki.sltj.20200930-002.
[8] 高强, 朱涛, 钟磊, 等. 地区电网清洁能源发电项目消纳能力研究[J]. 电力学报, 2017, 32(6): 490-496. DOI: 10.13357/j.cnki.jep.002683.
[9] ROJAS D, RIVERA M, WHEELER P. Basic principles of solar energy[C]// 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON). Piscataway, NJ: IEEE, 2021: 1-6. DOI: 10.1109/CHILECON54041.2021.9703066.
[10] ZHANG X G, JIA J R, ZHENG L M, et al. Maximum power point tracking algorithms for wind power generation system: review, comparison and analysis[J]. Energy Science & Engineering, 2023, 11(1): 430-444. DOI: 10.1002/ese3.1313.
[11] ALVAREZ G. An optimization model for operations oflarge scale hydro power plants[J]. IEEE Latin America Transactions, 2020, 18(9): 1631-1638. DOI: 10.1109/TLA.2020.9381806.
[12] 蔡源, 吴浩, 唐丹. 光伏发电功率预测方法综述[J]. 四川电力技术, 2024, 47(2): 25-31. DOI: 10.16527/j.issn.1003-6954.20240205.
[13] IBRAHIM I M, BELANGER J, SHEHATA A S, et al. Enhancement of photovoltaic power farms using a new power prediction approach[J]. International Journal of Energy Research, 2022, 46(4): 4222-4246. DOI: 10.1002/er.7422.
[14] ZHAO S L, ZHAO S S. Wind power interval prediction via an integrated variational empirical decomposition deep learning model[J]. Sustainability, 2023, 15(7): 6114. DOI: 10.3390/su15076114.
[15] NUNES MACIEL J, JAVIER GIMENEZ LEDESMA J, HIDEO ANDO O Jr. Hybrid prediction method of solar irradiance applied to short-term photovoltaic energy generation[J]. Renewable and Sustainable Energy Reviews, 2024, 192: 114185. DOI: 10.1016/j.rser.2023.114185.
[16] HUANG N T, WU Y Y, LU G B, et al. Combined probability prediction of wind power considering the conflict of evaluation indicators[J]. IEEE Access, 2019, 7: 174709-174724. DOI: 10.1109/ACCESS.2019.2954699.
[17] GUPTA A, KUMAR A, BOOPATHI K. Intraday wind power forecasting employing feedback mechanism[J]. Electric Power Systems Research, 2021, 201: 107518. DOI: 10.1016/j.epsr.2021.107518.
[18] WANG Y, CHI P, NIE R, et al. A novel fractional discrete grey model with variable weight buffer operator and its applications in renewable energy prediction[J]. Soft Computing, 2023, 27(14): 9321-9345. DOI: 10.1007/s00500-023-08203-y.
[19] LUO X L, DUAN H M, HE L. A novelRiccati equation grey model and its application in forecasting clean energy[J]. Energy, 2020, 205: 118085. DOI: 10.1016/j.energy.2020.118085.
[20] 杨婷, 陈黎来, 李世纪, 等. 基于主成分分析-线性回归的光伏发电功率预测研究[J]. 南京工程学院学报(自然科学版), 2022, 20(1): 77-83. DOI: 10.13960/j.issn.1672-2558.2022.01.015.
[21] 李佳欣, 王智伟. 基于模型预测控制的风光储综合能源系统优化调度[J]. 分布式能源, 2024, 9(1): 43-53. DOI: 10.16513/j.2096-2185.DE.2409106.
[22] WANG J M, ZHOU Q W, ZHANG X T. Wind power forecasting based on time series ARMA model[J]. IOP Conference Series: Earth and Environmental Science, 2018, 199: 022015. DOI: 10.1088/1755-1315/199/2/022015.
[23] JUNG A H, LEE D H, KIM J Y, et al. Regional photovoltaic power forecasting using vector autoregression model in South Korea[J]. Energies, 2022, 15(21): 7853. DOI: 10.3390/en15217853.
[24] BOZORG M, BRACALE A, CARAMIA P, et al. Bayesian bootstrap quantile regression for probabilistic photovoltaic power forecasting[J]. Protection and Control of Modern Power Systems, 2020, 5(1):21. DOI: 10.1186/s41601-020-00167-7.
[25] 杨强, 颜宗辉, 杜秀举, 等. 基于ANN架构的新能源发电预测模型的研究[J]. 电气应用, 2024, 43(2): 76-82.
[26] 韩亚军. 基于神经网络的相空间重构短期风速发电功率在线预测[J]. 装备制造技术, 2018(4): 26-29, 44. DOI: 10.3969/j.issn.1672-545X.2018.04.006.
[27] HANIFI S, ZARE-BEHTASH H, CAMMARANO A, et al. Offshore wind power forecasting based on WPD andoptimised deep learning methods[J]. Renewable Energy, 2023, 218: 119241. DOI: 10.1016/j.renene.2023.119241.
[28] LIU L Q, LI Y. Research on a photovoltaic power prediction model based on an IAO-LSTM optimization algorithm[J]. Processes, 2023, 11(7): 1957. DOI: 10.3390/pr11071957.
[29] REN X Y, ZHANG F, YAN J S, et al. A novel convolutional neural net architecture basedon incorporating meteorological variable inputs into ultra-short-term photovoltaic power forecasting[J]. Sustainability, 2024, 16(7): 2786. DOI: 10.3390/su16072786.
[30] 田崇翼, 王学睿, 王瑞琪. 基于CEEMD-SVM的风速混合预测模型研究[J]. 计算机时代, 2023(7): 24-28. DOI: 10.16644/j.cnki.cn33-1094/tp.2023.07.006.
[31] CHEN Y B, SHI J, CHENG X G, et al. Hybrid models based on LSTM and CNN architecture with Bayesian optimization for ShortTerm photovoltaic power forecasting[C]// 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). Piscataway, NJ: IEEE, 2021: 1415-1422. DOI: 10.1109/ICPSAsia52756.2021.9621525.
[32] ZHANG J H, ZHAO Z Y, YAN J, et al. Ultra-short-term wind power forecasting based on CGAN-CNN-LSTM model supported by lidar[J]. Sensors, 2023, 23(9): 4369. DOI: 10.3390/s23094369.
[33] 刘岩, 李雨森, 张夕佳, 等. 基于粒子群优化算法的可再生能源功率预测模型设计[J]. 电子设计工程, 2023, 31(9): 146-150. DOI: 10.14022/j.issn1674-6236.2023.09.030.
[34] ANGIZEH F, BAE J, CHEN J, et al. Impact assessment framework for grid integration of energy storage systems and renewable energy sources toward clean energy transition[J]. IEEE Access, 2023, 11: 134995-135005.
[35] LÓPEZ PROL J, DE LLANO PAZ F, CALVO-SILVOSA A, et al. Wind-solar technological, spatial and temporal complementarities in Europe: a portfolio approach[J]. Energy, 2024, 292: 130348. DOI: 10.1016/j.energy.2024.130348.
[36] SUN K Q, XIAO H Q, LIU S Y, et al. A review of clean electricity policies: from countries to utilities[J]. Sustainability, 2020, 12(19): 7946. DOI: 10.3390/su12197946.
[37] 潘忠志, 孔宁, 王燕涛. 改进清洁能源消纳的配电网资源优化配置研究[J]. 东北电力大学学报, 2023, 43(6): 71-78. DOI: 10.19718/j.issn.1005-2992.2023-06-0071-08.
[38] HUANG Y Z, WANG Y X, LI C Y, et al. Physics insight of the inertia of power systems and methods to provide inertial response[J]. CSEE Journal of Power and Energy Systems, 2022, 8(2): 559-568.
[39] 王云会, 郑强仁, 郭淼, 等. 分布式电源接入配电网的控制策略及消纳能力评估研究[J]. 电器与能效管理技术, 2022 (4): 83-87. DOI: 10.16628/j.cnki.2095-8188.2022.04.014.
[40] WANG Q, LI M, LUO P D, et al. Analysis on the coupling characteristics of frequency stability and voltage stability in weak connected power grid with high ratio of clean energy[J]. Energy Reports, 2022, 8: 1432-1437. DOI: 10.1016/j.egyr.2021.11.118.
[41] 孟高军, 张峰, 徐晓轶, 等. 基于网络安全稳定约束的清洁能源消纳能力评估方法[J]. 太阳能学报, 2023, 44(11): 505-512. DOI: 10.19912/j.0254-0096.tynxb.2022-1053.
[42] MAIHEMUTI S, WANG W Q, WU J H, et al.New energy power system operation security evaluation based on the SWOT analysis[J]. Scientific Reports, 2022, 12(1): 12680. DOI: 10.1038/s41598-022-16444-4.
[43] HU TT, ZHANG B, LIU P Y, et al. Modeling and analysis of distribution network with photovoltaic cells based on Markov global sensitivity[J]. Frontiers in Energy Research, 2024, 12: 1374467. DOI: 10.3389/fenrg.2024.1374467.
[44] 刘纯, 屈姬贤, 石文辉. 基于随机生产模拟的清洁能源消纳能力评估方法[J]. 中国电机工程学报, 2020, 40(10): 3134-3144. DOI: 10.13334/j.0258-8013.pcsee.191794.
[45] 张真, 李延和, 保积秀, 等. 基于REPS的青海清洁能源消纳能力计算方法研究[J]. 青海电力, 2020, 39(1): 1-6. DOI: 10.15919/j.cnki.qhep.2020.01.001.
[46] DOU X, SONG L, ZHANG S N, et al.Multi-time scale trading simulation of source grid load storage based on continuous trading mechanism for China[J]. Sensors, 2022, 22(6): 2363. DOI: 10.3390/s22062363.
[47] SUO X, ZHAO S Q, MA Y F. Multipoint layout planning method for multi-energy sources based on time-series production simulation[J]. International Journal of Energy Research, 2022, 46(7): 9323-9344. DOI: 10.1002/er.7808.
[48] WANG S R. The time-series production simulation in cost management of new energy grid connection under the internet of things[J]. IEEE Access, 2024, 12: 32369-32380.
[1] CHENG Chunxing, PAN Qing, WU Yangyang, WEI Jinyou, WEI Yuwei, TIAN Wenfei, JIANG Jiaoyun. Combined Effects of Microplastics and Cadmium on Standard Metabolism of Cyprinus carpio var. Quanzhounensis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 65-74.
[2] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55-68.
[3] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94-104.
[4] LIU Zhenyu, SONG Shuxiang, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Modeling and Design of Low Power and High Precision Sigma-Delta Modulator [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 58-70.
[5] HUANG Hengjie, GONG Xiaolong, WANG Gaocai. An Area Coverage Control Algorithm Based on Connected Dominating Set for Sensor Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 19-25.
[6] WEI Zhonghui. The Study on Thermoregulation and Testing Metabolic Rate of the Fejervarya multistriata [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 137-142.
[7] ZHANG Shang-kun, SONG Shu-xiang. Design of a 5.8 GHz and Fully Integrated CMOS Low Noise Amplifier [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 13-18.
[8] WU Yi-xian, SU Cheng, CHEN Ming, FENG Guo-fu, CHI Tao. Clustering Management Structure for Greenhouse Wireless Sensor Network Based on Agent [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 210-214.
[9] CHEN Dong-lian, LUO Xiao-shu, CHEN Hong-bin, LIAO Zhi-xian, WANG Wen-yan. A Distributed Compression-Transmission Algorithm for Multimedia Sensor Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(4): 25-29.
[10] NA Ri-sa, LIU Ying, LI Yuan. Semantic Fuzzy Calculation and Product Recommendation Based on Online Reviews [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 143-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[2] SHI Huilu, MO Yanhua, LUO Haiyu, MA Jiangming. Inhibitory Activity of Ethyl Acetate Extracts of Loropetalum chinense against Pathogens[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(1): 1 -8 .
[3] HE Qing, LI Dong, LUO Siyuan, HE Yudong, LI Biao, WANG Qiang. Research Progress in Ultra-wideband Rydberg Atomic Antenna Technology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 1 -19 .
[4] HUANG Renhui, ZHANG Ruifeng, WEN Xiaohao, BI Jinjie, HUANG Shoulin, LI Tinghui. Complex-value Covariance-based Convolutional Neural Network for Decoding Motor Imagery-based EEG Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 43 -56 .
[5] TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1 -14 .
[6] LI Zongxiao, ZHANG Jian, LUO Xinyue, ZHAO Yifei, LU Fei. Research on Arrival Trajectory Prediction Based on K-means and Adam-LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 15 -23 .
[7] SONG Mingkai, ZHU Chengjie. Research on Fault Location of Distribution Network Based on H-WOA-GWO and Region Correction Strategies[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 24 -37 .
[8] HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58 -68 .
[9] LI Zhixin, KUANG Wenlan. Fine-grained Image Classification Combining Adaptive Spatial Mutual Attention and Feature Pair Integration Discrimination[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 69 -82 .
[10] SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83 -96 .