Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (4): 165-174.doi: 10.16088/j.issn.1001-6600.2024090801
• Ecology and Environmental Science Research • Previous Articles Next Articles
NIE Qinping, WANG Zirui, HOU Xiaomin, WU Qingfeng*
| [1] WILKINSON J L, BOXALL A B A, KOLPIN D W, et al. Pharmaceutical pollution of the world's rivers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(8): e2113947119. DOI: 10.1073/pnas.2113947119. [2] BAVUMIRAGIRA J P, GE J N, YIN H L. Fate and transport of pharmaceuticals in water systems: a processes review[J]. Science of the Total Environment, 2022, 823: 153635. DOI: 10.1016/j.scitotenv.2022.153635. [3] ROUT P R, ZHANG T C, BHUNIA P, et al. Treatment technologies for emerging contaminants in wastewater treatment plants: a review[J]. Science of the Total Environment, 2021, 753: 141990. DOI: 10.1016/j.scitotenv.2020.141990. [4] ZHANG Q Q, YING G G, PAN C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015,49(11): 6772-6782. DOI: 10.1021/acs.est.5b00729. [5] HEBERER T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water[J]. Journal of Hydrology, 2002, 266(3/4): 175-189. DOI: 10.1016/S0022-1694(02)00165-8. [6] WEI R C, GE F, HUANG S Y, et al. Occurrence of veterinary antibiotics in animal wastewater and surface water around farms in Jiangsu Province, China[J]. Chemosphere, 2011, 82(10): 1408-1414. DOI: 10.1016/j.chemosphere.2010.11.067. [7] SUN J T, ZENG Q T, TSANG D C W, et al. Antibiotics in the agricultural soils from the Yangtze River Delta, China[J]. Chemosphere, 2017, 189: 301-308. DOI: 10.1016/j.chemosphere.2017.09.040. [8] SHI H, YANG Y, LIU M, et al. Occurrence and distribution of antibiotics in the surface sediments of the Yangtze Estuary and nearby coastal areas[J]. Marine Pollution Bulletin, 2014, 83(1): 317-323. DOI: 10.1016/j.marpolbul.2014.04.034. [9] WANG X H, LIN A Y C. Is the phototransformation of pharmaceuticals a natural purification process that decreases ecological and human health risks?[J]. Environmental Pollution, 2014, 186: 203-215. DOI: 10.1016/j.envpol.2013.12.007. [10] BHAT A P, POMERANTZ W C K, ARNOLD W A. Wavelength-dependent UV-LED photolysis of fluorinated pesticides and pharmaceuticals[J]. Environmental Science & Technology, 2023, 57(13): 5327-5336. DOI: 10.1021/acs.est.3c00627. [11] CHOWDHURY P, SARATHY S R, DAS S, et al. Direct UV photolysis of pharmaceutical compounds: determination of pH-dependent quantum yield and full-scale performance[J]. Chemical Engineering Journal, 2020, 380: 122460. DOI: 10.1016/j.cej.2019.122460. [12] SCISCENKO I, ARQUES A, VARGA Z, et al. Significant role of iron on the fate and photodegradation of enrofloxacin[J]. Chemosphere, 2021, 270: 129791. DOI: 10.1016/j.chemosphere.2021.129791. [13] BAI Y, ZHOU Y L, CHE X W, et al. Indirect photodegradation of sulfadiazine in the presence of DOM: effects of DOM components and main seawater constituents[J]. Environmental Pollution, 2021, 268, Part B: 115689. DOI: 10.1016/j.envpol.2020.115689. [14] WEI L X, LI H X, LU J F. Algae-induced photodegradation of antibiotics: a review[J]. Environmental Pollution, 2021, 272: 115589. DOI: 10.1016/j.envpol.2020.115589. [15] 黄宏,李圆杏,杨红伟.水环境中抗生素的光降解研究进展[J].环境化学,2013,32(7):1335-1341. DOI: 10.7524/j.issn.0254-6108.2013.07.029. [16] WALCH H, VON DER KAMMER F, HOFMANN T. Freshwater suspended particulate matter-key components and processes in floc formation and dynamics[J]. Water Research, 2022, 220: 118655. DOI: 10.1016/j.watres.2022.118655. [17] 胡学香,陈勇,聂玉伦,等.水中四环素类化合物在不同光源下的光降解[J].环境工程学报,2012,6(8):2465-2469. [18] NIU J F, LI Y, WANG W L. Light-source-dependent role of nitrate and humic acid in tetracycline photolysis: kinetics and mechanism[J]. Chemosphere, 2013, 92(11): 1423-1429. DOI: 10.1016/j.chemosphere.2013.03.049. [19] GOURNIS D, KARAKASSIDES M A, PETRIDIS D. Formation of hydroxyl radicals catalyzed by clay surfaces[J]. Physics and Chemistry of Minerals, 2002, 29(2): 155-158. DOI: 10.1007/s002690100215. [20] 孙昊婉,张立秋,封莉.光诱导腐殖酸产生自由基对天然水中雌二醇光降解效能的影响[J].环境工程学报,2017,11(11):5794-5798. DOI: 10.12030/j.cjee.201702118. [21] WANG M J, SHI H H, SHAO S, et al. Montmorillonite promoted photodegradation of amlodipine in natural water via formation of surface complexes[J]. Chemosphere, 2022, 286(1): 131641. DOI: 10.1016/j.chemosphere.2021.131641. [22] XU L P, LI H, MITCH W A, et al. Enhanced phototransformation of tetracycline at smectite clay surfaces under simulated sunlight via a Lewis-base catalyzed alkalization mechanism[J]. Environmental Science & Technology, 2019, 53(2): 710-718. DOI: 10.1021/acs.est.8b06068. [23] LI S, HU J Y. Photolytic and photocatalytic degradation of tetracycline: effect of humic acid on degradation kinetics and mechanisms[J]. Journal of Hazardous Materials, 2016, 318: 134-144. DOI: 10.1016/j.jhazmat.2016.05.100. [24] ZHU X D, WANG Y J, SUN R J, et al. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2[J]. Chemosphere, 2013, 92(8): 925-932. DOI: 10.1016/j.chemosphere.2013.02.066. [25] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O-) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. DOI: 10.1063/1.555805. [26] JIAO S J, ZHENG S R, YIN D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria[J]. Chemosphere, 2008, 73(3): 377-382. DOI: 10.1016/j.chemosphere.2008.05.042. |
| [1] | YANG Zhengmin, ZHANG Yanjun, WANG Shengyun, HU Xianyun, Li Jun. Extraction and Free Radical Scavenging Activity of Polysaccharide and Polyphenol from the Ginkgo biloba L. Shell [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 105-110. |
| [2] | NIE Yingtao,PENG Fenglin,LI Shaojie,WANG Ziwei,OU Chan. Effect of Polysaccharides of the Euphoria Longan (Lour.) Steudin Antifatigue by Reducing the Level of Oxygen Free Radicals [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 157-161. |
| [3] | ZOU Biqun. Antioxidant Activity of Vodiamine, Mulberry, Pomelo and Banana [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 50-54. |
| [4] | LI Nan, DENG Zhi-nian, FENG Ling-bo, ZHOU Rui-fang, WEI Yuan-wen, CAO Hui-qing, LI Yang-rui. Isolation and Identification of Microorganism Producing Humic Acid with Sugarcane Molasses Alcohol Wastewater [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 87-92. |
|