Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 30-39.doi: 10.16088/j.issn.1001-6600.2024052903

Previous Articles     Next Articles

Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis

ZHAI Siqi1,2,3, CAI Wenjun1,2,3, ZHU Su1,2,3, LI Hanlong1,2,3, SONG Hailiang1,2,3, YANG Xiaoli4, YANG Yuli1,2,3*   

  1. 1. School of Environment, Nanjing Normal University, Nanjing Jiangsu 210023, China;
    2. Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology (Nanjing Normal University), Nanjing Jiangsu 210023, China;
    3. Jiangsu Engineering Lab of Water and Soil Eco-Remediation (Nanjing Normal University), Nanjing Jiangsu 210023, China;
    4. School of Civil Engineering, Southeast University, Nanjing Jiangsu 211189, China
  • Received:2024-05-29 Revised:2024-07-01 Online:2024-12-30 Published:2024-12-30

Abstract: Membrane fouling poses a limitation to the application of forward osmosis (FO), and reverse solute flux (RSF) from the draw solutes further reduces the permeability of the membrane. Therefore, this study investigated the dynamic relationship between reverse solute flux and organic membrane fouling using typical inorganic draw solutions (DSs)(NaCl,NaHCO3,NaH2PO4,NH4Cl,CaCl2). On one hand, the reverse solute flux directly interacted with the membrane fouling layer, affecting its configuration. For example, the reverse flux of Ca2+ from CaCl2 draw solute readily crosslinked with sodium alginate (SA), forming a three-dimensional network structure that exacerbated membrane fouling. On the other hand, the formation of membrane fouling reduced the reverse flux of Ca2+ from CaCl2 draw solute (5.8±1.6 mmol·m-2·h-1) while increasing the reverse diffusion of NH+4 from NH4Cl draw solution (129.2±12.8 mmol·m-2·h-1). Consequently, the water recovery using NH4Cl as the draw solute (151.4±10.6 g) was lower than that using CaCl2 (246.4±124.7 g). Furthermore, reverse solute flux altered the properties of the feed solute, leading to the dominance of different filtration mechanisms in the formation of membrane fouling, which subsequently impacts the degree of fouling.

Key words: forward osmosis, membrane fouling, reverse solute flux, draw solute, dynamic relationship

CLC Number:  X52
[1] 郜红娟, 韩会庆, 罗绪强, 等. 贵州土地利用变化对淡水生态系统服务的影响[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 157-163. DOI: 10.16088/j.issn.1001-6600.2020.01.021.
[2] 肖彤, 马捷, 王雁, 等. 铁改性掺氮碳纤维活化过一硫酸盐降解双酚A[J]. 环境科学学报, 2021, 41(7): 2766-2773. DOI: 10.13671/j.hjkxxb.2020.0543.
[3] MENG F G, ZHANG S Q, OH Y, et al. Fouling in membrane bioreactors: an updated review[J]. Water Research, 2017, 114: 151-180. DOI: 10.1016/j.watres.2017.02.006.
[4] WANG X H, CHANG V W C, TANG C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504: 113-132. DOI: 10.1016/j.memsci.2016.01.010.
[5] IBRAR I, YADAV S, ALTAEE A, et al. Treatment of biologically treated landfill leachate with forward osmosis: investigating membrane performance and cleaning protcols[J]. Science of the Total Environment, 2020, 744:140901. DOI: 10.1016/j.scitotenv.2020.140901.
[6] 杨望臻, 顾正阳, 龚超, 等. 基于正渗透的水处理组合工艺应用研究进展[J]. 水处理技术, 2018, 44(2): 1-5. DOI: 10.16796/j.cnki.1000-3770.2018.02.001.
[7] 吴秋燕, 张忠国, 杨柳, 等. 正渗透汲取液的研究进展[J]. 环境科学与技术, 2015, 38(6): 139-145, 150. DOI: 10.3969/j.issn.1003-6504.2015.06.022.
[8] JAFARINEJAD S, PARK H, MAYTON H, et al. Concentrating ammonium in wastewater by forward osmosis using a surface modified nanofiltration membrane[J]. Environment Science: Water Research & Technology, 2019, 5(2): 246-255. DOI: 10.1039/C8EW00690C.
[9] 宗刚, 沈凡. 正渗透膜回收废水中氨氮的研究进展[J]. 应用化工, 2024, 53(1): 222-227. DOI: 10.16581/j.cnki.issn1671-3206.20231128.005.
[10] YI X W, CHEN K, XIE M, et al. A novel fouling control strategy for forward osmosis membrane during sludge thickening via self-forming protective layer[J]. Separation and Purification Technology, 2023, 319: 124069. DOI: 10.1016/j.seppur.2023.124069.
[11] GONZALES R R, SASAKI Y, ISTIROKHATUN T, et al. Ammonium enrichment and recovery from synthetic and real industrial wastewater by amine-modified thin film composite forward osmosis membranes[J]. Separation and Purification Technology, 2022, 297: 121534. DOI: 10.1016/j.seppur.2022.121534.
[12] GAO T Y, ZHANG H M, XU X T, et al. Dissolved methane rejection by forward osmosis membrane to achieve in-situ energy recovery from anaerobic effluent[J]. Separation and Purification Technology, 2021, 254: 117489. DOI:10.1016/j.seppur.2020.117489.
[13] LEE L W, ZHU X Z, LIU Z W, et al. Probing the key foulants and membrane fouling under increasing salinity in anaerobic osmotic membrane bioreactors for low-strength wastewater treatment[J]. Chemical Engineering Journal, 2021, 413: 127450. DOI:10.1016/j.cej.2020.127450.
[14] 杨恒, 朱雷, 朱先征, 等. 厌氧正渗透MBR处理市政废水的效果及盐积累特性[J]. 水处理技术, 2021, 47(7): 113-117. DOI: 10.16796/j.cnki.1000-3770.2021.07.022.
[15] 吴思邈, 陈建明, 王爱廉, 等. 正渗透技术浓缩苹果汁过程中反向溶质扩散的研究[J]. 食品工业科技, 2021, 42(24): 172-180. DOI: 10.13386/j.issn1002-0306.2021040109.
[16] 方丽瑶, 吕慧, 付佳蓓, 等. 聚苯乙烯磺酸钠掺杂正渗透膜的制备及其性能[J]. 化工进展, 2019, 38(10): 4684-4692. DOI: 10.16085/j.issn.1000-6613.2019-0133.
[17] LI B D, HE X, WANG P P, et al. Opposite impacts of K+ and Ca2+ on membrane fouling by humic acid and cleaning process: evaluation and mechanism investigation[J]. Water Research, 2020, 183: 116006. DOI: 10.1016/j.watres.2020.116006.
[18] 张高爽, 张捍民. 钙离子对正渗透中海藻酸钠溶液污染特性的影响[J]. 水处理技术, 2022, 48(2): 89-92. DOI: 10.16796/j.cnki.1000-3770.2022.02.019.
[19] TANG C Y, SHE Q H, LAY W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science. 2010, 354(1/2): 123-133. DOI: 10.1016/j.memsci.2010.02.059.
[20] CAI W W, GAO Z Y, YU S J, et al. New insights into membrane fouling formation during ultrafiltration of organic wastewater with high salinity[J]. Journal of Membrane Science, 2021, 635: 119446. DOI: 10.1016/j.memsci.2021.119446.
[21] ZEWELDI H G, LIMLJUCO L A, BENDOY A P, et al. The potential of monocationic imidazolium-, phosphonium-, and ammonium-based hydrophilic ionic liquids as draw solutes for forward osmosis[J]. Desalination, 2018, 444: 94-106. DOI: 10.1016/j.desal.2018.07.017.
[22] 王波, 唐勇, 杨景龙, 等. 镧-钙双金属凝胶微球对水中低磷含量的去除性能[J]. 水处理技术, 2021, 47(4): 86-90, 105. DOI: 10.16796/j.cnki.1000-3770.2021.04.017.
[23] JUN B M, CHO J, JANG A, et al. Charge characteristics (surface charge vs. zeta potential) of membrane surfaces to assess the salt rejection behavior of nanofiltration membranes[J]. Separation and Purification Technology, 2020, 247: 117026. DOI: 10.1016/j.seppur.2020.117026.
[24] BANERJEE A, DE R, DAS B. Hydrodynamic and conformational characterization of aqueous sodium alginate solutions with varying salinity[J]. Carbohydrate Polymers, 2022, 277: 118855. DOI: 10.1016/j.carbpol.2021.118855.
[25] ZHANG B, MAO X, HUANG D M, et al. Performance and membrane fouling in a novel algal-bacterial aerobic granular sludge (ABGS)-membrane bioreactor: effect of ABGS size[J]. Journay of Water Process Engineering, 2022, 49: 103155. DOI: 10.1016/j.jwpe.2022.103155.
[26] DING A, FAN Q, CHENG R, et al. Impacts of applied voltage on microbial electrolysis cell-anaerobic membrane bioreactor (MEC-AnMBR) and its membrane fouling mitigation mechanism[J]. Chemical Engineering Journal, 2018, 333: 630-635. DOI: 10.1016/j.cej.2017.09.190.
[27] LIU Y W, LI X, YANG Y L, et al. Analysis of the major particle-size based foulants responsible for ultrafiltration membrane fouling in polluted raw water[J]. Desalination, 2014, 347: 191-198. DOI: 10.1016/j.desal.2014.05.039.
[28] SHE Q H, JIN X, LI Q H, et al. Relating reverse and forward solute diffusion to membrane fouling in osmotically driven membrane processes[J]. Water Research, 2012, 46(7): 2478-2486. DOI: 10.1016/j.watres.2012.02.024.
[29] TANG S X, YANG J Y, LIN L Z, et al. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal[J]. Chemical Engineering Journal, 2020, 393: 124728. DOI: 10.1016/j.cej.2020.124728.
[30] ZHANG Y, ZHANG M J, WANG F Y, et al. Membrane fouling in a submerged membrane bioreactor: effect of pH and its implications[J]. Bioresource Technology, 2014, 152: 7-14. DOI: 10.1016/j.biortech.2013.10.096.
[31] HALALI M A, DE LANNOY C F. Quantifying the impact of electrically conductive membrane-generated hydrogen peroxide and extreme pH on the viability of Escherichia coli biofilms[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 660-671. DOI: 10.1021/acs.iecr.1c02914.
[1] CHEN Peng, CHEN Xiaofei, LI Shilong, HE Qiankun, WANG Zhenghui. Variability Analysis of Water Quality Series in Jianghan Plain During 2016-2021 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 195-202.
[2] DENG Hua, ZHANG Junyu, HUANG Rui, WANG Wei, HU Lening. Adsorption Capacity and Mechanism of ZnO Loading Bamboo Biochar for Cr(Ⅵ) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 131-142.
[3] GUO Yongli, QUAN Xiqiang, WU Qing. Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds of Typical Karst Groundwater Source in North China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 102-113.
[4] QIN Fang, JIANG Qin-feng, WANG Ting, WANG Yu-rong, FENG Ji-qing, CHEN Jin-yi. Removal Capacity of Microcystis aeruginosaby Mg/Al Hydrotalcite and Zn/Al Hydrotalcite [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 115-121.
[5] LIN Yong-sheng, PEI Jian-guo. Groundwater Quality and Characteristics of Karst Groundwater Pollutionin the Mashan Subterranean River,Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 127-133.
[6] DENG Hua, LI Qiuyan, ZHOU Ruishuang, PANG Shuyue, LIU Jinyu, KANG Caiyan. Adsorption of Cd(Ⅱ) and Cu(Ⅱ) from Aqueous Solutions by Polygonum Pubescens Blume Powder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 102-112.
[7] YUAN Dongmei, QI Yueming, HUANG Guangming, WANG Junping, MA Yipeng. Efficient Utilization of Groundwater Resources Based on Reservoir Regulation and Coordinated Control of Geological Disasters [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 149-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHENG Guoquan, QIN Yongli, WANG Chenxiang, GE Shijia, WEN Qianmin, JIANG Yongrong. Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 40 -52 .
[6] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[7] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[8] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[9] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .
[10] DUAN Qinyu, XUE Guijun, TAN Quanwei, XIE Wenju. Improved BWO-TimesNet Short-term Heat Load Forecasting Model Based onSVMD[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 101 -116 .