Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (6): 40-52.doi: 10.16088/j.issn.1001-6600.2024040303

Previous Articles     Next Articles

Stepwise Precipitation of Heavy Metals from Acid Mine Drainage and Mineral Formation in Sulfate-Reducing Anaerobic Baffled Reactor System

ZHENG Guoquan1, QIN Yongli1, WANG Chenxiang1, GE Shijia1, WEN Qianmin2, JIANG Yongrong1*   

  1. 1. College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    2. Guilin Jingkang Environmental Protection Co., Ltd, Guilin Guangxi 541004, China
  • Received:2024-04-03 Revised:2024-05-01 Online:2024-12-30 Published:2024-12-30

Abstract: To achieve the fractional precipitation and persistent fixation of multiple heavy metals during the treatment of acid mine drainage (AMD) using sulfate-reducing bacteria (SRB), a five-compartment anaerobic baffled reactor (ABR) was used to treat the simulated AMD. The effects of AMD on system operation efficiency, physical and chemical properties, biological activity and microbial community structure of granular sludge were observed. The characteristics of heavy metal fractional precipitation and precipitated biomore formation in AMD were investigated. The results indicated that the sulfate reduction system of ABR was capable of precipitating cadmium (Cd), zinc (Zn), and iron (Fe) from AMD in a graded manner, with Cd and Zn primarily removed in the first compartment, and Fe predominantly eliminated in the second and third compartments, all with removal rates exceeding 99%. Chemical speciation analysis of granular sludge and SEM observations revealed that the removed heavy metals mainly deposit in sulfide-bound forms in the sludge, subsequently transforming into lattice states and forming irregular particles (0.3~0.7 μm) on the sludge surface. XRD analysis showed that the main phases in the first compartment were sphalerite, wurtzite, and greenockite, while magnetite and pyrite were predominant in compartments two to five. Analysis of microbial community structure demonstrated the crucial roles of Lactobacillus and Desulfovibrio in heavy metal precipitation and mineral formation processes within the reactor. This study provides theoretical basis for the resourceful treatment and mineralization of heavy metals in AMD.

Key words: acid mine drainage, heavy metals, anaerobic baffled reactor, sulfate reducing bacteria, anaerobic granular sludge, biological mineralization, metal sulfide minerals

CLC Number:  X703
[1] 闻倩敏, 秦永丽, 郑君健, 等. 硫酸盐还原菌法固定酸性矿山废水中重金属的研究进展[J]. 化工进展, 2022, 41(10): 5578-5587. DOI: 10.16085/j.issn.1000-6613.2021-2532.
[2] 倪师军, 李珊, 李泽琴, 等. 矿山酸性废水的环境影响及防治研究进展[J]. 地球科学进展, 2008,23(5): 501-508. DOI: 10.3321/j.issn:1001-8166.2008.05.010.
[3] 万由令, 李龙海. 玉米芯为碳源实现酸性矿山废水生物处理[J]. 工业安全与环保, 2004,30(5): 11-15. DOI: 10.3969/j.issn.1001-425X.2004.05.005.
[4] ZHANG M L, WANG H X. Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis[J]. Minerals Engineering, 2016, 92: 63-71. DOI: 10.1016/j.mineng.2016.02.008.
[5] SAHINKAYA E, GUNGOR M. Comparison of sulfidogenic up-flow and down-flow fluidized-bed reactors for the biotreatment of acidic metal-containing wastewater[J]. Bioresource Technology, 2010, 101(24): 9508-9514. DOI: 10.1016/j.biortech.2010.07.113.
[6] DENG D Y, WEIDHAAS J L, LIN L S. Kinetics and microbial ecology of batch sulfidogenic bioreactors for co-treatment of municipal wastewater and acid mine drainage[J]. Journal of Hazardous Materials, 2016, 305: 200-208. DOI: 10.1016/j.jhazmat.2015.11.041.
[7] 揭念芹. 基础化学I[M]. 北京:科学出版社, 2000.
[8] LI F, WANG W, LI C C, et al. Self-mediated pH changes in culture medium affecting biosorption and biomineralization of Cd2+ by Bacillus cereus Cd01 [J]. Journal of Hazardous Materials, 2018, 358(S15): 178-186. DOI: 10.1016/j.jhazmat.2018.06.066.
[9] KAKSONEN A H, RIEKKOLA-VANHANEN M L, PUHAKKA J A. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater[J]. Water Research, 2003, 37(2): 255-266. DOI: 10.1016/S0043-1354(02)00267-1.
[10] MOKONE T P, HILLE R P V, LEWIS A E. Metal sulphides from wastewater: assessing the impact of supersaturation control strategies[J]. Water Research, 2012, 46(7): 2088-2100. DOI: 10.1016/j.watres.2012.01.027.
[11] LETTINGA G, FIELD J, VAN LIER J, et al. Advanced anaerobic wastewater treatment in the near future[J]. Water Science and Technology, 1997, 35(10): 5-12. DOI: 10.2166/wst.1997.0347.
[12] WANG J L, HUANG Y H, ZHAO X. Performance and characteristics of an anaerobic baffled reactor[J]. Bioresource Technology, 2004, 93(2): 205-208. DOI: 10.1016/J.BIORTECH.2003.06.004.
[13] 蒋永荣, 胡明成, 李学军, 等. ABR处理硫酸盐有机废水的相分离特性研究[J]. 环境科学, 2010, 31(7): 1544-1553.
[14] JIANG Y R, QIN Y L, YU F M, et al. Is COD/SO2-4 ratio responsible for metabolic phase-separation shift in anaerobic baffled reactor treating sulfate-laden wastewater? [J]. International Biodeterioration & Biodegradation, 2018, 126: 37-44. DOI: 10.1016/j.ibiod.2017.08.013.
[15] JIANG Y R, LI H, QIN Y L, et al. Spatial separation and bio-chain cooperation between sulfidogenesis and methanogenesis in an anaerobic baffled reactor with sucrose as the carbon source[J]. International Biodeterioration & Biodegradation, 2019, 138: 99-105. DOI: 10.1016/j.ibiod.2019.01.004.
[16] SAHINKAYA E, YUCESOY Z. Biotreatment of acidic zinc- and copper-containing wastewater using ethanol-fed sulfidogenic anaerobic baffled reactor[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 989-997. DOI: 10.1007/s00449-010-0423-9.
[17] 崔福斋. 生物矿化[M]. 北京:清华大学出版社, 2007:325.
[18] LABRENZ M, DRUSCHEL G K, THOMSEN-EBERT T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria[J]. Science, 2000, 290(5497): 1744-1747. DOI: 10.1126/science.290.5497.1744.
[19] ZHANG H Z, BANFIELD J F. Aggregation, coarsening, and phase transformation in ZnS nanoparticles studied by molecular dynamics simulations[J]. Nano Letters, 2004, 4(4): 713-718. DOI: 10.1021/nl035238a.
[20] GARCÍA C, MORENO D A, BALLESTER A, et al. Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria[J]. Minerals Engineering, 2001, 14(9): 997-1008. DOI: 10.1016/S0892-6875(01)00107-8.
[21] 王大为, 毕春梦, 秦永丽, 等. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519. DOI: 10.16085/j.issn.1000-6613.2022-2222.
[22] JIANG Y R, ZHANG J, WEN Q M, et al. Up-flow anaerobic column reactor for sulfate-rich cadmium-bearing wastewater purification: system performance, removal mechanism and microbial community structure[J]. Biodegradation, 2022, 33(3): 239-253. DOI: 10.1007/s10532-022-09983-0.
[23] ASSOCIATION C, WASHINGTON D. APHA, A. P. H. A. : Standard methods for the examination of water and wastewater[J]. American Physical Education Review, 1995, 24(9): 481-486.
[24] 陈中云, 闵航, 吴伟祥. 水稻田土壤硫酸盐还原活性的测定及其影响因子的研究[J]. 土壤通报, 2003,34(5): 455-458. DOI: 10.3321/j.issn:0564-3945.2003.05.018.
[25] ALBORÉS A F, CID B P, GÓMEZ E F, et al. Comparison between sequential extraction procedures and single extractions for metal partitioning in sewage sludge samples[J]. Analyst, 2000, 125(7): 1353-1357. DOI: 10.1039/b001983f.
[26] 肖飞, 丁旭升, 樊培培, 等. 基于高通量测序技术研究环境微生物群落结构特征[J]. 广西师范大学学报(自然科学版), 2023, 41(2): 175-189. DOI: 10.16088/j.issn.1001-6600.2021111702.
[27] 钟晓兰, 周生路, 黄明丽, 等. 土壤重金属的形态分布特征及其影响因素[J]. 生态环境学报, 2009, 18(4): 1266-1273. DOI: 10.3969/j.issn.1674-5906.2009.04.013.
[28] 戴友芝, 施汉昌, 冀静平,等. 厌氧折流板反应器处理有毒废水及其污泥特性的研究[J]. 环境科学学报, 2000, 20(3): 284-289. DOI: 10.13671/j.hjkxxb.2000.03.006.
[29] 袁乙卜, 张建民, 陈希, 等. 大分子有机物作用下胞外聚合物对除磷污泥颗粒化的影响[J]. 环境工程学报, 2021, 15(4): 1321-1332. DOI: 10.12030/j.cjee.202010101.
[30] MAHTO K U, VANDAN A, PRIYADARSHANEE M, et al. Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: beyond the protective role in survivability[J]. Journal of Cleaner Production, 2022, 379: 134759. DOI: 10.1016/j.jclepro.2022.134759.
[31] DO H, CHE C, ZHAO Z J, et al. Extracellular polymeric substance from Rahnella sp. LRP3 converts available Cu into Cu5(PO4)2(OH)4 in soil through biomineralization process[J]. Environmental Pollution, 2020, 260: 114051. DOI: 10.1016/j.envpol.2020.114051.
[32] LIN Q, WANG J S, FU S Y, et al. Elemental sulfur in northern South China Sea sediments and its significance[J]. Science China Earth Sciences, 2015, 58(12): 2271-2278. DOI: 10.1007/s11430-015-5182-7.
[33] 谢巧勤, 陈天虎, 范子良, 等. 铜陵新桥硫铁矿床中胶状黄铁矿微尺度观察及其成因探讨[J]. 中国科学:地球科学, 2014, 44(12): 2665-2674.
[34] YALIKUN Y, XUE C J, DAI Z J, et al. Microbial structures and possible bacterial sulfide fossils in the giant Jinding Zn-Pb deposit, Yunnan, SW-China: insights into the genesis of Zn-Pb sulfide mineralization[J]. Ore Geology Reviews, 2018, 92: 61-72. DOI: 10.1016/j.oregeorev.2017.11.004.
[35] PICARD A, GARTMAN A, CLARKE D R, et al. Sulfate-reducing bacteria influence the nucleation and growth of mackinawite and greigite[J]. Geochimica et Cosmochimica Acta, 2018, 220: 367-384. DOI: 10.1016/j.gca.2017.10.006.
[36] JIANG N, FENG Y Q, HUANG Q, et al. Effect of environmental pH on mineralization of anaerobic iron-oxidizing bacteria [J]. Frontiers in Microbiology, 2022, 13: 885098. DOI: 10.3389/fmicb.2022.885098.
[37] HAN X H, TOMASZEWSKI E J, SORWAT J, et al. Effect of microbial biomass and humic acids on abiotic and biotic magnetite formation[J]. Environmental Science & Technology, 2020, 54(7): 4121-4130. DOI: 10.1021/acs.est.9b07095.
[38] 欧正, 韦重韬, SANTIGIE K S, 等.广西下巴铅锌矿床镉元素的富集规律研究[J]. 有色金属(矿山部分), 2013, 65(1): 57-61. DOI: 10.3969/j.issn.1671-4172.2013.01.014.
[39] FRANCIS A J, DODGE C J, GILLOW J B et al. Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions[J]. Environmental Science & Technology, 2008, 42(7): 2355-2360. DOI: 10.1021/es072016w.
[40] GUPTA R S, GAO B L. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I) [J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(2): 285-294. DOI: 10.1099/ijs.0.001792-0.
[41] MENG X H, CAO Q, SUN Y, et al. 16S rRNA genes- and metagenome-based confirmation of syntrophic butyrate-oxidizing methanogenesis enriched in high butyrate loading[J]. Bioresource Technology, 2022, 345: 126483. DOI: 10.1016/j.biortech.2021.126483.
[42] STEFANIE J W H, ELFERINK O, VISSER A, et al. Sulfate reduction in methanogenic bioreactors[J]. FEMS Microbiology Reviews, 1994, 15(2/3): 119-136. DOI: 10.1016/0168-6445(94)90108-2.
[43] 姬玉欣, 马春, 金仁村, 等. 硫酸盐生物还原中电子供体的选择[J]. 化工进展, 2011, 30(12): 2593-2600. DOI: 10.16085/j.issn.1000-6613.2011.12.039.
[44] 汪晨祥, 秦永丽, 蒋永荣, 等. ABR产酸-硫酸盐还原相颗粒污泥富集PHAs产生菌[J]. 化工进展, 2023, 42(12): 6658-6665. DOI: 10.16085/j.issn.1000-6613.2023-0203.
[45] LI Z, LOU Y, DING J, et al. Metabolic regulation of ethanol-type fermentation of anaerobic acidogenesis at different pH based on transcriptome analysis of Ethanoligenens harbinense[J]. Biotechnology for Biofuels, 2020, 13: 101.DOI: 10.1186/s13068-020-01740-w.
[46] KARNACHUK O V, MARDANOV A V, AVAKYAN M R, et al. Draft genome sequence of the first acid-tolerant sulfate-reducing deltaproteobacterium Desulfovibrio sp. TomC having potential for minewater treatment[J]. FEMS Microbiology Letters, 2015, 362(4): 1-3. DOI: 10.1093/femsle/fnv007.
[47] BERGEY D H, HOLT J G. Bergey’s manual of determinative bacteriology[M]. 9th ed.Baltimore: Williams & Wilkins, 1994.
[48] YUAN T G, KO J H, ZHOU L L, et al. Iron oxide alleviates acids stress by facilitating syntrophic metabolism between Syntrophomonas and methanogens[J]. Chemosphere, 2020, 247: 125866. DOI: 10.1016/j.chemosphere.2020.125866.
[49] AMEEN F A, HAMDAN A M, EL-NAGGAR M Y. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018[J]. Scientific Reports, 2020, 10(1): 314. DOI: 10.1038/s41598-019-57210-3.
[50] XUE Z F, CHENG W C, WANG L, et al. Effect of a harsh circular environment on self-healing microbial-induced calcium carbonate materials for preventing Pb2+ migration[J]. Environmental Technology & Innovation, 2023, 32: 103380. DOI: 10.1016/j.eti.2023.103380.
[51] TOURNEY J, NGWENYA B T. The role of bacterial extracellular polymeric substances in geomicrobiology[J]. Chemical Geology, 2014, 386: 115-132. DOI: 10.1016/j.chemgeo.2014.08.011.
[52] WEN L M, HUANG L Y, WANG Y, et al. Facet-engineered hematite boosts microbial electrogenesis by synergy of promoting electroactive biofilm formation and extracellular electron transfer[J]. Science of The Total Environment, 2022, 819: 153154. DOI: 10.1016/j.scitotenv.2022.153154.
[53] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153. DOI: 10.16088/j.issn.1001-6600.2020061301.
[54] ZENG W M, LI F, WU C C, et al. Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals[J]. Bioprocess and Biosystems Engineering, 2020, 43(1): 153-167. DOI: 10.1007/s00449-019-02213-7.
[1] ZHAO Keyi, ZHANG Ningning, XUE Jieyi, LI Guangluan, LI Yi, YU Fangming, LIU Kehui. CiteSpace Visualization Analysis of Heavy Metal Hyperaccumulators [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 191-209.
[2] PENG Limei, ZHAO Li, ZHOU Wu, HU Yueming. Risk Assessment of Heavy Metals in Cultivated Land in Conghua District of Guangzhou City, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 118-129.
[3] XU Tingting, YU Qiuping, QI Peiyi, LIU Kehui, LI Yi, JIANG Yongrong, YU Fangming. Effects of Different Washing Solutions on the Desorption of Heavy Metals from a Lead-zinc Mine Soil [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 188-193.
[4] LU Yuxiang, NONG Zhiwen, SU Chengyuan, CHEN Ruicong, LIU Fanfan, HUANG Zhi, CHEN Menglin. Efficiency and Micro-ecology of Microaeration-AnaerobicBaffled Reactor Treating Swine Wastewater [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 90-98.
[5] ZHENG Haixia, WANG Yue, CHEN Fen, GOU Chaoyang, ZHENG Qingrong. Pollution Characteristics and Potential Ecological Risk Assessmentof Soil Heavy Metal in the South Top of Wutai Mountain, Shanxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 99-107.
[6] ZHANG Jun, LI Dao-hong, DU Dian-song. Enrichment of Heavy Metals in Diestrammena from Longjing Cave and Bailong Cave of Guizhou,China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 104-109.
[7] DENG Hua, XU Dan-dan, LI Ming-shun, LI Jin-cheng. Comparison of Different Digestion Methods in Analyzing Heavy Metals Content in Soils [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHU Gege, HUANG Anshu, QIN Yingying. Analysis of Development Trend of International Mangrove Research Based on Web of Science[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 1 -12 .
[2] HE Jing, FENG Yuanliu, SHAO Jingwen. Research Progress on Multi-source Data Fusion Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 13 -27 .
[3] WANG Shuying, LU Yuxiang, DONG Shutong, CHEN Mo, KANG Bingya, JIANG Zhanglan, SU Chengyuan. Research Progress on the Propagation Process and Control Technology of ARGs in Wastewater[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 1 -15 .
[4] ZHONG Qiao, CHEN Shenglong, TANG Congcong. Hydrogel Technology for Microalgae Collection: Status Overview, Challenges and Development Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 16 -29 .
[5] ZHAI Siqi, CAI Wenjun, ZHU Su, LI Hanlong, SONG Hailiang, YANG Xiaoli, YANG Yuli. Dynamic Relationship Between Reverse Solute Flux and Membrane Fouling in Forward Osmosis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 30 -39 .
[6] LIU Yang, ZHANG Yijie, ZHANG Yan, LI Ling, KONG Xiangming, LI Hong. Current Status and Trends of Algal Coagulation Elimination Technology in Drinking Water Treatment: a Visual Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 53 -66 .
[7] TIAN Sheng, CHEN Dong. A Joint Eco-driving Optimization Research for Connected Fuel Cell Hybrid Vehicle via Deep Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 67 -80 .
[8] CHEN Xiufeng, WANG Chengxin, ZHAO Fengyang, YANG Kai, GU Kexin. A Single Intersection Signal Control Method Based on Improved DQN Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 81 -88 .
[9] LI Xin, NING Jing. Online Assessment of Transient Stability in Power Systems Based on Spatiotemporal Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 89 -100 .
[10] DUAN Qinyu, XUE Guijun, TAN Quanwei, XIE Wenju. Improved BWO-TimesNet Short-term Heat Load Forecasting Model Based onSVMD[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 101 -116 .