Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 195-202.doi: 10.16088/j.issn.1001-6600.2023091802

Previous Articles     Next Articles

Variability Analysis of Water Quality Series in Jianghan Plain During 2016-2021

CHEN Peng, CHEN Xiaofei*, LI Shilong, HE Qiankun, WANG Zhenghui   

  1. Hubei Provincial Academy of Eco-environmental Science (Provincial Ecological Environment Engineering Assessment Center), Wuhan Hubei 430061, China
  • Received:2023-09-18 Revised:2024-01-10 Online:2024-07-25 Published:2024-09-05

Abstract: In recent years, the intensification of human activities has resulted in the decline of water quality for Jianghan Plain, the water quality series presents complicated evolution phenomena in middle and lower reaches of the main canal. Based on annual water quality monitoring data of Four Lakes (from 2016 to 2021), this study analyzed the distribution characteristics, variation rules and main environmental impact factors of the characteristic pollutants; diagnosed the spatiotemporal variation of water quality sequence, and recognized a set of variation elements and impact factors of regional system. The results showed that: ①The water quality of the middle and lower reaches were remarkable, and the series had obvious concentration gradient. ②Excessive aquaculture had led to the phenomenon of seasonal over-standard prominently. ③Non-point source pollution and ecological flow were the leading factors of water quality for the main canal. It indicated that this method could be used for variation analysis of water quality.

Key words: changing environments, water quality, Hurst coefficient, Gini coefficient, variation analysis, Jianghan Plain

CLC Number:  X522
[1] 赵晏慧, 李韬, 黄波, 等. 2016—2020年长江中游典型湖泊水质和富营养化演变特征及其驱动因素[J]. 湖泊科学, 2022, 34(5): 1441-1451. DOI: 10.18307/2022.0503.
[2] 陈善荣,何立环,张凤英,等. 2016—2019年长江流域水质时空分布特征[J]. 环境科学研究, 2020,33(5): 1100-1108. DOI: 10.13198/j.issn.1001-6929.2020.04.03.
[3] 夏军. 变化环境下水循环与水系统科学的研究与展望[J]. 水资源研究, 2012, 1(3): 21-28. DOI: 10.12677/JWRR.2012.13004.
[4] 陈旻坤,徐昔保. 近30年来鄱阳湖生态系统服务变化[J]. 湖泊科学, 2021,33(1): 309-318. DOI: 10.18307/2021.0126.
[5] 高思佳,侯泽英,吴越,等. 近50a洱海水环境演变特征及其主要驱动因素[J]. 湖泊科学,2023,35(4): 1296-1306. DOI: 10.18307/2023.0422.
[6] 刘敏,郭邵萌,郝垭珑,等. 牛头河流域1959—2018年径流演变特征分析[C] //2021第九届中国水生态大会论文集. 西安:西安理工大学,2021:323-336. DOI: 10.26914/c.cnkihy.2021.024703.
[7] 刘松,陈立华,丁星臣,等. 西江流域主要水文站近40年径流变化分析研究[J]. 人民长江, 2021, 52(S2): 52-55. DOI: 10.16232/j.cnki.1001-4179.2021.S2.012.
[8] 牛静怡, 谢平, 吴林倩,等. 基于统计实验的水文序列一致性测度比较分析[J]. 水力发电学报, 2020, 39(12): 47-61. DOI: 10.11660/slfdxb.20201205.
[9] 梁中耀, 刘永, 盛虎,等. 滇池水质时间序列变化趋势识别及特征分析[J]. 环境科学学报, 2014, 34(3): 754-762. DOI: 10.13671/j.hjkxxb.2014.0129.
[10] 黄玥, 黄志霖, 肖文发,等. 基于Mann-Kendall法的三峡库区长江干流入出库断面水质变化趋势分析[J].长江流域资源与环境, 2019, 28(4): 950-961. DOI: 10.11870/cjlyzyyhj201904020.
[11] 刘清琴.泾河上游年径流序列变异特征和预测及影响因素分析[D]. 兰州:兰州大学,2022. DOI: 10.27204/d.cnki.glzhu.2022.000788.
[12] 许斌,邹磊,姚立强,等. 长江中下游径流情势演变及其归因分析[J]. 人民长江, 2022,53(4): 91-97. DOI: 10.16232/j.cnki.1001-4179.2022.04.015.
[13] 王丽婧,李虹,杨正健,等. 三峡水库蓄水运行初期(2003—2012年)水环境演变特征的“四大效应”[J]. 环境科学研究, 2020,33(5): 1109-1118. DOI: 10.13198/j.issn.1001-6929.2020.03.23.
[14] 沈珍瑶,马玉坤,冯成洪,等. 人类活动影响下流域水土环境演变规律和环境效应研究进展[J]. 安全与环境工程, 2022,29(5): 65-69. DOI: 10.13578/j.cnki.issn.1671-1556.20220863.
[15] 方红卫,何国建,黄磊,等. 生态河流动力学研究的进展与挑战[J]. 水利学报, 2019,50(1): 75-87,96. DOI: 10.13243/j.cnki.slxb.20180790.
[16] 孔若楠,苏敬华,黄沈发. 崇明岛主要河道水质评价及时空变化特征[J]. 人民长江, 2022, 53(12): 44-49. DOI: 10.16232/j.cnki.1001-4179.2022.12.007.
[17] 韩超南,秦延文,马迎群,等. 三峡支流大宁河库湾水质分布变化原因及其生态效应[J]. 环境科学研究, 2020,33(4): 893-900. DOI: 10.13198/j.issn.1001-6929.2019.09.03.
[18] 谭力. 南水北调中线核心水源区土地利用转型及其生态环境效应研究[D].武汉:中国地质大学,2021. DOI: 10.27492/d.cnki.gzdzu.2021.000082.
[19] 胡亚伟,常东明,高子乐,等.黄河下游引黄灌区水系连通条件下水环境变化效应模拟[J].人民黄河, 2023,45(8):1-5. DOI: 10.3969/j.issn.1000-1379.2023.08.001.
[20] 谢平, 雷红富, 陈广才,等. 基于Hurst系数的流域降雨时空变异分析方法[J]. 水文, 2008, 28(5): 6-10. DOI: 10.3969/j.issn.1000-0852.2008.05.002.
[21] 许斌. 变化环境下区域水资源变异与评价方法不确定性[D].武汉: 武汉大学,2013.
[22] 程一鑫,李一平,朱晓琳,等.基于熵值—环境基尼系数法的平原河网区污染物总量分配[J].湖泊科学, 2020, 32(3): 619-628. DOI: 10.18307/2020.0303.
[23] 李如忠, 舒琨. 基于基尼系数的水污染负荷分配模糊优化决策模型[J]. 环境科学学报, 2010, 30(7): 1518-1526. DOI: 10.13671/j.hjkxxb.2010.07.022.
[24] 吴健生,门·新纳,梁景天,等.基于基尼系数的生态系统服务供需均衡研究:以广东省为例[J].生态学报, 2020, 40(19): 6812-6820. DOI: 10.5846/stxb201903280602.
[25] 谢平, 陈广才, 雷红富. 基于Hurst系数的水文变异分析方法[J]. 应用基础与工程科学学报, 2009, 17(1): 32-39. DOI: 10.3969/j.issn.1005-0930.2009.01.004.
[26] 李景保,于丹丹,张瑞,等.近61年来长江荆南三口水系连通性演变特征[J]. 长江流域资源与环境, 2019,28(5): 1214-1224. DOI: 10.11870/cjlyzyyhj201905021.
[27] 高学平,胡泽,闫晨丹,等. 考虑水力连通性的水系连通评价指标体系构建与应用[J]. 水资源保护, 2022,38(2): 41-47. DOI: 10.3880/j.issn.1004-6933.2022.02.006.
[28] LI Y L, ZHANG Q, LIU X G, et al. New insights on the surface hydrological connectivity of water depth thresholds in a flood-pulse-influenced floodplain system (Poyang Lake, China)[J]. Stochastic Environmental Research and Risk Assessment, 2020, 35(4):861-879. DOI: 10.1007/s00477-020-01897-8.
[1] YANG Haiju, WEI Feng, CHEN Jiamei, CHEN Bei, LI Fang, DU Lina, HAN Xuerong. Development of Biotic Index Based on Macroinvertebrates to Assess the River’s Health in Lijiang [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 172-185.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .