Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 16-29.doi: 10.16088/j.issn.1001-6600.2023052702

Previous Articles     Next Articles

Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis

YANG Yangyang1*, ZHU Zhenting1, YANG Cuiping2, LI Shihao1, ZHANG Shu3, FAN Xiulei1*, WAN Lei1   

  1. 1. School of Environmental Engineering, Xuzhou University of Technology, Xuzhou Jiangsu 221018, China;
    2. Xuzhou Water Conservancy Engineering Construction Management Center, Xuzhou Jiangsu 221000, China;
    3. Xuzhou Water Conservancy Building Design and Research Institute Co., LTD,Xuzhou Jiangsu 221000, China
  • Received:2023-05-27 Revised:2023-06-26 Published:2024-04-22

Abstract: Anaerobic digestion of excess sludge is one of the most effective technologies for anaerobic digestion treatment, which has the dual function of reducing environmental pollution and providing energy. The study compared and analyzed the current research hotspots in anaerobic digestion of excess sludge based on the relevant articles in the CNKI database and the Web of Science core database from 2003 to 2023 via bibliometric methods and visualization tools. The application of anaerobic digestion of excess sludge to produce methane is an important purpose for excess sludge treatment, and there is an important correlation between pretreatment technology and excess sludge treatment. The application of different pretreatment technologies, such as physical, chemical and biological enzymes, have a significant impact on biogas production, and a more appropriate pretreatment technology for the physical and chemical properties of the sludge can further increase the degree of excess sludge resource utilization while saving costs.

Key words: excess activated sludge, anaerobic digestion, methane, pretreatment, resource utilization

CLC Number:  X703
[1] 龙於洋,肖立群,沈东升,等. 基于文献计量学的剩余污泥高值化利用研究趋势分析[J]. 环境污染与防治, 2023, 45(2): 233-238. DOI:10.15985/j.cnki.1001-3865.2023.02.017.
[2] WU B R, DAI X H,CHAI X H. Critical review on dewatering of sewage sludge: influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. DOI: 10.1016/j.watres.2020.115912.
[3] CHEN Z, ZHANG W J, WANG D S, et al. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: kinetics of enzymatic reaction and re-flocculation morphology[J]. Water Research, 2015, 83: 367-376. DOI: 10.1016/j.watres.2015.06.026.
[4] ZHAO P H, LIU Y L, DOU C C, et al. Study on the characteristics of dissolution and acid production in waste activated sludge: focusing on the pretreatment of thermal-alkali with rhamnolipid[J]. Bioresource Technology, 2021, 327: 124796. DOI: 10.1016/j.biortech.2021.124796.
[5] HU J W, LI Z, ZHANG A,et al. Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: a review[J]. Environmental research, 2020, 188: 109764. DOI: 10.1016/j.envres.2020.109764.
[6] 戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012, 48(2): 1-5. DOI:10.3969/j.issn1002-8471.2012.02.001.
[7] 秦晴,张新喜,邱高,等. 城市污泥处理与资源化技术研究进展[J]. 广东化工, 2022, 49(15): 134-136. DOI:10.3969/j.issn.1007-1865.2022.15.046.
[8] 王东琴,惠晓梅,杨凯. 污泥处理处置技术进展[J]. 山西化工, 2016, 36(3): 17-19, 49. DOI:10.16525/j.cnki.cn14-1109/tq.2016.03.06.
[9] LIN H C, CHANG C C, LIN M Y,et al. Anaerobic digestion assisted by ultrasonic energy[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(3): 339-344. DOI: 10.1080/15567036.2016.1206639.
[10] 李琳. 污泥厌氧消化技术发展应用现状及趋势[J]. 中国环保产业, 2013(8): 57-60. DOI:10.3969/j.issn.1006-5377.2013.08.018.
[11] MEYER T, CHEN X, TRAN H N,et al. Natural freezing-thawing and its impact on dewaterability and anaerobic digestibility of biosludge[J]. Environmental Engineering Science, 2017, 34(5): 357-366. DOI: 10.1089/ees.2016.0372.
[12] PHALAKORNKULE C, NUCHDANG S, KHEMKHAO M,et al. Effect of freeze-thaw process on physical properties, microbial activities and population structures of anaerobic sludge[J]. Journal of Bioscience and Bioengineering, 2017, 123(4): 474-481. DOI: 10.1016/j.jbiosc.2016.11.005.
[13] XU G H, CHEN S H, SHI J W, et al. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge[J]. Journal of Hazardous Materials, 2010, 180(1/3): 340-346. DOI: 10.1016/j.jhazmat.2010.04.036.
[14] WANG F, WANG Y,JI M. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration[J]. Journal of Hazardous Materials, 2005, 123(1/3): 145-150. DOI: 10.1016/j.jhazmat.2005.03.033.
[15] 王昱琛,宿程远,丁凤秀,等. 厌氧共消化低碳处理餐厨垃圾与剩余污泥的现状与展望[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 406-417. DOI:10.16088/j.issn.1001-6600.2022022707.
[16] 肖飞,丁旭升,王维红. 基于文献计量学分析的好氧颗粒污泥研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 1-14. DOI:10.16088/j.issn.1001-6600.2021041501.
[17] 安东璇,耿瑞,朱洁,等. 城镇污泥特性及处置过程碳排放影响的研究[J]. 环境科技, 2023, 36(1): 21-25. DOI:10.19824/j.cnki.cn32-1786/x.2023.0007.
[18] 吕丰锦,刘俊新. 我国南北方城市污水处理厂污泥性质比较分析[J]. 给水排水, 2016, 52(S1): 63-66. DOI:10.13789/j.cnki.wwe1964.2016.0341.
[19] GIANICO A, BRAGUGLIA C M, CESARINI R,et al. Reduced temperature hydrolysis at 134 ℃ before thermophilic anaerobic digestion of waste activated sludge at increasing organic load[J]. Bioresource Technology, 2013, 143: 96-103. DOI: 10.1016/j.biortech.2013.05.069.
[20] 朱赵冉,黄显怀,唐玉朝,等. 低速搅拌球磨破解剩余污泥高效释放碳源[J]. 中国给水排水, 2021, 37(13): 1-6. DOI:10.19853/j.zgjsps.1000-4602.2021.13.001.
[21] 黄惠莹,周兴求. 微波预处理对厌氧颗粒污泥发酵产氢的影响[J]. 中国给水排水, 2010, 26(23): 13-16. DOI:10.19853/j.zgjsps.1000-4602.2010.23.004.
[22] 田禹,方琳,黄君礼. 微波辐射预处理对污泥结构及脱水性能的影响[J]. 中国环境科学, 2006, 26(4): 459-463. DOI:10.3321/j.issn:1000-6923.2006.04.017.
[23] GULSEN AKBAY H E, DIZGE N,KUMBUR H. Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal, and hybrid pretreatment[J]. Bioresource Technology, 2021, 340: 125688. DOI: 10.1016/j.biortech.2021.125688.
[24] 刘永剑,刘宇雷,徐学信,等. 超声/厌氧消化处理剩余污泥参数优化及机理研究[J]. 中国给水排水, 2022, 38(5): 84-90. DOI:10.19853/j.zgjsps.1000-4602.2022.05.014.
[25] 蒋建国,张妍,张群芳,等. 超声波对污泥破解及改善其厌氧消化效果的研究[J]. 环境科学, 2008, 29(10): 2815-2819. DOI:10.13227/j.hjkx.2008.10.020.
[26] NGUYEN D D, YOON Y S, NGUYEN N D,et al. Enhanced efficiency for better wastewater sludge hydrolysis conversion through ultrasonic hydrolytic pretreatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 244-252. DOI: 10.1016/j.jtice.2016.12.019.
[27] 胡凯,赵庆良,邱微. 冷冻预处理对剩余污泥性质的影响研究[J]. 水工业市场, 2011(6): 37-41.
[28] HU J W, LI Z, WU Z G,et al. Potassium ferrate coupled with freezing method enhances methane production from sludge anaerobic digestion[J]. Bioresource Technology, 2021, 332: 125112. DOI: 10.1016/j.biortech.2021.125112.
[29] SINGH D K,GARG A. Thermal hydrolysis of sewage sludge: improvement in biogas generation and prediction of global warming potential[J]. Waste Management & Research: 1-10. [2023-05-27]. https://doi.org/10.1177/0734242X231171044. DOI: 10.1177/0734242X231171044.
[30] ZHANG L, WANG X P, CHEN Y,et al. Medium-chain fatty acid production from thermal hydrolysed sludge without external electron donor supplementation[J]. Bioresource Technology, 2023, 374: 128805. DOI: 10.1016/j.biortech.2023.128805.
[31] 王治军,王伟. 热水解预处理改善污泥的厌氧消化性能[J]. 环境科学, 2005, 26(1): 68-71. DOI:10.13227/j.hjkx.2005.01.015.
[32] 金文杰. 市政污泥微波预处理及无害化处理工艺研究[J]. 市政技术, 2021, 39(9): 169-173. DOI: 10.19922/j.1009-7767.2021.09.169.
[33] NEUMANN P, PESANTE S, VENEGAS M,et al. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge[J]. Reviews in Environmental Science and Bio/technology, 2016, 15(2): 173-211. DOI: 10.1007/s11157-016-9396-8.
[34] 刘永剑,刘宇雷,徐学信,等. 超声/厌氧消化处理剩余污泥参数优化及机研究[J]. 中国给水排水, 2022, 38(5): 84-90. DOI:10.19853/j.zgjsps.1000-4602.2022.05.014.
[35] 任征然,李伟,高金华,等. 热水解高级厌氧消化研究与应用进展[J]. 水处理技术, 2021, 47(11): 26-30, 53. DOI:10.16796/j.cnki.1000-3770.2021.11.005.
[36] CHIU Y C, CHANG C N, LIN J G,et al. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water Science and Technology, 1997, 36(11): 155-162. DOI: 10.1016/S0273-1223(97)00681-1.
[37] 张万钦,戚丹丹,吴树彪,等. 不同预处理方式对污泥厌氧发酵的影响[J]. 农业机械学报, 2014, 45(9): 187-198. DOI:10.6041/j.issn.1000-1298.2014.09.031.
[38] 宋青青,任宏宇,孔凡英,等. 不同预处理方法促进剩余污泥发酵制氢研究进展[J]. 中国环境科学, 2021, 41(10): 4736-4744. DOI:10.19674/j.cnki.issn1000-6923.20210618.008.
[39] 贾舒婷,张栋,赵建夫,等. 不同预处理方法促进初沉/剩余污泥厌氧发酵产沼气研究进展[J]. 化工进展, 2013, 32(1): 193-198. DOI:10.3969/j.issn.1000-6613.2013.01.033.
[40] 李震,阮大年. 碱预处理工艺强化脱水污泥厌氧消化[J]. 净水技术, 2020, 39(7): 145-150. DOI:10.15890/j.cnki.jsjs.2020.07.024.
[41] 金春姬,赵振焕,彭刚,等. 添加碱渣对污泥厌氧消化的影响研究[J]. 中国给水排水, 2008, 24(11): 30-33. DOI:10.3321/j.issn:1000-4602.2008.11.009.
[42] MARYAM A, ZESHA N, BADSHAH M,et al. Enhancing methane production from dewatered waste activated sludge through alkaline and photocatalytic pretreatment[J]. Bioresource Technology, 2021, 325: 124677. DOI: 10.1016/j.biortech.2021.124677.
[43] ZHANG S T, GUO H G, DU L Z, et al. Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: focused on high-solid state[J]. Bioresource Technology, 2015, 185: 171-177. DOI: 10.1016/j.biortech.2015.02.050.
[44] DEVLIN D C, ESTEVES S R R, DINSDALE R M,et al. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology, 2011, 102(5): 4076-4082. DOI: 10.1016/j.biortech.2010.12.043.
[45] CHEN Y G, JIANG S, YUAN H Y, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41(3): 683-689. DOI: 10.1016/j.watres.2006.07.030.
[46] AHN K H, PARK K Y, MAENG S K,et al. Ozonation of wastewater sludge for reduction and recycling[J]. Water Science & Technology, 2002, 46(10): 71-77. DOI: 10.2166/wst.2002.0293.
[47] 石璞玉,孙力平,谢春雨,等. 臭氧预处理对剩余污泥特性及厌氧消化的影响[J]. 环境工程学报, 2017, 11(6): 3740-3746. DOI:10.12030/j.cjee.201609252.
[48] CHACANA J, LABELLE M A, LAPORTE A,et al. Ozonation of primary sludge and digested sludge to increase methane production in a chemically enhanced primary treatment facility[J]. Ozone: Science & Engineering, 2017, 39(3): 148-158. DOI: 10.1080/01919512.2017.1301247.
[49] CHACANA J, ALIZADEH S, LABELLE M A,et al. Effect of ozonation on anaerobic digestion sludge activity and viability[J]. Chemosphere, 2017, 176: 405-411. DOI: 10.1016/j.chemosphere.2017.02.108.
[50] HASHIMOTO K, NAKAI S, MOTOSHIGE H,et al. Sludge reduction in a full-scale wastewater treatment plant using ultra-fine-and micro-bubble ozonation[J]. Ozone: Science & Engineering, 2021, 43(2): 127-135. DOI: 10.1080/01919512.2020.1863742.
[51] AMUDHA V, KAVITHA S, FERNANDEZ C,et al. Effect of deflocculation on the efficiency of sludge reduction by Fenton process[J]. Environmental Science and Pollution Research International, 2016, 23(19): 19281-19291. DOI: 10.1007/s11356-016-7118-y.
[52] YILDIZ S,CÖMERT A. Fenton process effect on sludge disintegration[J]. International Journal of Environmental Health Research, 2020, 30(1): 89-104. DOI: 10.1080/09603123.2019.1576162.
[53] DEWIL R, APPELS L, BAEYENS J,et al. Peroxidation enhances the biogas production in the anaerobic digestion of biosolids[J]. Journal of Hazardous Materials, 2007, 146(3): 577-581. DOI: 10.1016/j.jhazmat.2007.04.059.
[54] WANG M W, ZHAO Z Q, ZHANG Y B. Disposal of Fenton sludge with anaerobic digestion and the roles of humic acids involved in Fenton sludge[J]. Water Research, 2019, 163: 114900. DOI: 10.1016/j.watres.2019.114900.
[55] YILDIZ S, OLABI A. Effect of Fe2+ and Fe0 applied photo-Fenton processes on sludge disintegration[J]. Chemical Engineering & Technology, 2021, 44(1): 95-103. DOI: 10.1002/ceat.202000269.
[56] ZHANG T T, WANG Q L, YE L,et al. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown[J]. Scientific Reports, 2015, 5: 16631. DOI: 10.1038/srep16631.
[57] YILDIZ S,OLABI A. Application of photocatalysis methods to enhance sludge disintegration[J]. Waste and Biomass Valorization, 2021, 12(8): 4419-4431. DOI: 10.1007/s12649-020-01334-5.
[58] XIAO K K, PEI K Y, WANG H,et al. Citric acid assisted Fenton-like process for enhanced dewaterability of waste activated sludge with in-situ generation of hydrogen peroxide[J]. Water Research, 2018, 140: 232-242. DOI: 10.1016/j.watres.2018.04.051.
[59] YUAN D L, ZHANG C, TANG S F, et al. Enhancing CaO2 Fenton-like process by Fe(II)-oxalic acid complexation for organic wastewater treatment[J]. Water Research, 2019, 163: 114861. DOI: 10.1016/j.watres.2019.114861.
[60] YE F X, JI H Z, YE Y F. Effect of potassium ferrate on disintegration of waste activated sludge (WAS)[J]. Journal of Hazardous Materials, 2012, 219/220: 164-168. DOI: 10.1016/j.jhazmat.2012.03.070.
[61] YE F X, LIU X W, LI Y. Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge[J]. Journal of Hazardous Materials, 2012, 199/200: 158-163. DOI: 10.1016/j.jhazmat.2011.10.071.
[62] ZHANG X H, LEI H Y, CHEN K,et al. Effect of potassium ferrate (K2FeO4) on sludge dewaterability under different pH conditions[J]. Chemical Engineering Journal, 2012, 210: 467-474. DOI: 10.1016/j.cej.2012.09.013.
[63] HU J W, LI Z, ZHANG A,et al. Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: a review[J]. Environmental Research, 2020, 188: 109764. DOI: 10.1016/j.envres.2020.109764.
[64] NING X A, FENG Y F, WU J J, et al. Effect of K2FeO4/US treatment on textile dyeing sludge disintegration and dewaterability[J]. Journal of Environmental Management, 2015, 162: 81-86. DOI: 10.1016/j.jenvman.2015.07.001.
[65] ZHANG Y P, HU R Q, LI F,et al. Effect and mechanism of waste-activated sludge disintegration treated by composite ferrate solution[J]. Environmental Engineering Science, 2019, 36(5): 530-540. DOI: 10.1089/ees.2018.0402.
[66] WU C, JIN L Y, ZHANG P Y, et al. Effects of potassium ferrate oxidation on sludge disintegration, dewaterability and anaerobic biodegradation[J]. International Biodeterioration & Biodegradation, 2015, 102: 137-142. DOI: 10.1016/j.ibiod.2015.01.002.
[67] HU J W, GUO B, LI Z,et al. Revealing the mechanisms for potassium ferrate affecting methane production from anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2020, 317: 124022. DOI: 10.1016/j.biortech.2020.124022.
[68] HE H Y, LIU Y L, WANG X S, et al. Effects of newly prepared alkaline ferrate on sludge disintegration and methane production: reaction mechanism and model simulation[J]. Chemical Engineering Journal, 2018, 343: 520-529. DOI: 10.1016/j.cej.2018.03.031.
[69] HE Z W, LIU W Z, GAO Q,et al. Potassium ferrate addition as an alternative pre-treatment to enhance short-chain fatty acids production from waste activated sludge[J]. Bioresource Technology, 2018, 247: 174-181. DOI: 10.1016/j.biortech.2017.09.073.
[70] 黄翔峰,穆天帅,申昌明,等. 表面活性剂在剩余污泥处理中的作用机制研究进展[J]. 环境工程学报, 2016, 10(12): 6819-6826. DOI:10.12030/j.cjee.201507058.
[71] BAO Q H, HUANG L X, XIU J L, et al. Study on the treatment of oily sludge in oil fields with lipopeptide/sophorolipid complex bio-surfactant[J]. Ecotoxicology and Environmental Safety, 2021, 212: 111964. DOI: 10.1016/j.ecoenv.2021.111964.
[72] MULLIGAN C N. Recent advances in the environmental applications of biosurfactants[J]. Current Opinion in Colloid & Interface Science, 2009, 14(5): 372-378. DOI: 10.1016/j.cocis.2009.06.005.
[73] MAO X H, JIANG R, XIAO W,et al. Use of surfactants for the remediation of contaminated soils: a review[J]. Journal of Hazardous Materials, 2015, 285: 419-435. DOI: 10.1016/j.jhazmat.2014.12.009.
[74] XU Q X, LUO T Y, WU R L,et al. Rhamnolipid pretreatment enhances methane production from two-phase anaerobic digestion of waste activated sludge[J]. Water Research, 2021, 194: 116909. DOI: 10.1016/j.watres.2021.116909.
[75] LI J Q, LIU W Z, REN R Y, et al. Weakened adhesion force between extracellular polymeric substances of waste activated sludge caused by rhamnolipid leading to more efficient carbon release[J]. Science of the Total Environment, 2019, 692: 892-902. DOI: 10.1016/j.scitotenv.2019.07.348.
[76] LI X M, SUI K X, ZHANG J M, et al. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge[J]. Science of the Total Environment, 2022, 806(Pt 1): 150347. DOI: 10.1016/j.scitotenv.2021.150347.
[77] LI J Q, LIU W Z, CAI W W, et al. Applying rhamnolipid to enhance hydrolysis and acidogenesis of waste activated sludge: retarded methanogenic community evolution and methane production[J]. RSC Advances, 2019, 9(4): 2034-2041. DOI: 10.1039/c8ra08993k.
[78] FERREIRA T S, DE SOUSA T A T, DIÓGENES H J F,et al. Assessment of bioconversion performance after alkaline fermentation process to recover biogas and nutrients[J]. Desalination and Water Treatment, 2022, 268: 205-214. DOI: 10.5004/dwt.2022.28740.
[79] PAŹDZIOR K, DOMIŃSKA M,OLAK-KUCHARCZYK M. Ozone as a catalyst of surplus activated sludge hydrolysis for the biogas production enhancement[J]. Catalysts, 2022, 12(9):1060. DOI: 10.3390/catal12091060.
[80] SUN Y Q, ZHANG M Y, SONG T,et al. Moderate potassium ferrate dosage enhances methane production from the anaerobic digestion of waste activated sludge[J/OL]. Environmental Technology: 1-10. [2023-05-26]. https://doi.org/10.1080/09593330.2022.2152389. DOI: 10.1080/09593330.2022.2152389.
[81] YANG Q, LUO K, LI X M,et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes[J]. Bioresource Technology, 2010, 101(9): 2924-2930. DOI: 10.1016/j.biortech.2009.11.012.
[82] TAS O D, YANGIN-GOMEC C, OLMEZ-HANCI T, et al. Comparative assessment of sludge pre-treatment techniques to enhance sludge dewaterability and biogas production[J]. Clean-Soil, Air, Water, 2018, 46(1):1700569. DOI: 10.1002/clen.201700569.
[83] MERLIN CHRISTY P, GOPINATH L R,DIVYA D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 167-173. DOI: 10.1016/j.rser.2014.03.010.
[84] LIU W, ZHONG X, CHENG L,et al. Cellular and compositional insight into the sludge dewatering process using enzyme treatment[J]. Environmental Science and Pollution Research, 2018, 25(29): 28942-28953. DOI: 10.1007/s11356-018-2854-9.
[85] XIN X D, HE J G, FENG J H, et al. Solubilization augmentation and bacterial community responses triggered by co-digestion of a hydrolytic enzymes blend for facilitating waste activated sludge hydrolysis process[J]. Chemical Engineering Journal, 2016, 284: 979-988. DOI: 10.1016/j.cej.2015.09.060.
[1] NI Zhi, WEN Zhong, WANG Can, ZHANG Yewei, YANG Shengpeng, WANG Zhenyu. Optimal Operation of Integrated Energy System with Photothermal MRH and Gas Doping [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 54-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[2] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[3] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[4] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[5] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55 -68 .
[6] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69 -83 .
[7] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[8] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .
[9] YU Qian, CHEN Qingfeng, HE Naixu, HAN Zongzhao, LU Jiahui. Genetic Algorithm for Community Detection Accelerated by Matrix Operations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 105 -119 .
[10] LONG Fang, CAI Jing, ZHU Yan. Analysis of Reliability in a Multicomponent Stress-Strength Model for Lomax Distribution under Progressive type-Ⅱ Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 120 -130 .