Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 16-29.doi: 10.16088/j.issn.1001-6600.2023052702
Previous Articles Next Articles
YANG Yangyang1*, ZHU Zhenting1, YANG Cuiping2, LI Shihao1, ZHANG Shu3, FAN Xiulei1*, WAN Lei1
[1] 龙於洋,肖立群,沈东升,等. 基于文献计量学的剩余污泥高值化利用研究趋势分析[J]. 环境污染与防治, 2023, 45(2): 233-238. DOI:10.15985/j.cnki.1001-3865.2023.02.017. [2] WU B R, DAI X H,CHAI X H. Critical review on dewatering of sewage sludge: influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. DOI: 10.1016/j.watres.2020.115912. [3] CHEN Z, ZHANG W J, WANG D S, et al. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: kinetics of enzymatic reaction and re-flocculation morphology[J]. Water Research, 2015, 83: 367-376. DOI: 10.1016/j.watres.2015.06.026. [4] ZHAO P H, LIU Y L, DOU C C, et al. Study on the characteristics of dissolution and acid production in waste activated sludge: focusing on the pretreatment of thermal-alkali with rhamnolipid[J]. Bioresource Technology, 2021, 327: 124796. DOI: 10.1016/j.biortech.2021.124796. [5] HU J W, LI Z, ZHANG A,et al. Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: a review[J]. Environmental research, 2020, 188: 109764. DOI: 10.1016/j.envres.2020.109764. [6] 戴晓虎. 我国城镇污泥处理处置现状及思考[J]. 给水排水, 2012, 48(2): 1-5. DOI:10.3969/j.issn1002-8471.2012.02.001. [7] 秦晴,张新喜,邱高,等. 城市污泥处理与资源化技术研究进展[J]. 广东化工, 2022, 49(15): 134-136. DOI:10.3969/j.issn.1007-1865.2022.15.046. [8] 王东琴,惠晓梅,杨凯. 污泥处理处置技术进展[J]. 山西化工, 2016, 36(3): 17-19, 49. DOI:10.16525/j.cnki.cn14-1109/tq.2016.03.06. [9] LIN H C, CHANG C C, LIN M Y,et al. Anaerobic digestion assisted by ultrasonic energy[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2017, 39(3): 339-344. DOI: 10.1080/15567036.2016.1206639. [10] 李琳. 污泥厌氧消化技术发展应用现状及趋势[J]. 中国环保产业, 2013(8): 57-60. DOI:10.3969/j.issn.1006-5377.2013.08.018. [11] MEYER T, CHEN X, TRAN H N,et al. Natural freezing-thawing and its impact on dewaterability and anaerobic digestibility of biosludge[J]. Environmental Engineering Science, 2017, 34(5): 357-366. DOI: 10.1089/ees.2016.0372. [12] PHALAKORNKULE C, NUCHDANG S, KHEMKHAO M,et al. Effect of freeze-thaw process on physical properties, microbial activities and population structures of anaerobic sludge[J]. Journal of Bioscience and Bioengineering, 2017, 123(4): 474-481. DOI: 10.1016/j.jbiosc.2016.11.005. [13] XU G H, CHEN S H, SHI J W, et al. Combination treatment of ultrasound and ozone for improving solubilization and anaerobic biodegradability of waste activated sludge[J]. Journal of Hazardous Materials, 2010, 180(1/3): 340-346. DOI: 10.1016/j.jhazmat.2010.04.036. [14] WANG F, WANG Y,JI M. Mechanisms and kinetics models for ultrasonic waste activated sludge disintegration[J]. Journal of Hazardous Materials, 2005, 123(1/3): 145-150. DOI: 10.1016/j.jhazmat.2005.03.033. [15] 王昱琛,宿程远,丁凤秀,等. 厌氧共消化低碳处理餐厨垃圾与剩余污泥的现状与展望[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 406-417. DOI:10.16088/j.issn.1001-6600.2022022707. [16] 肖飞,丁旭升,王维红. 基于文献计量学分析的好氧颗粒污泥研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 1-14. DOI:10.16088/j.issn.1001-6600.2021041501. [17] 安东璇,耿瑞,朱洁,等. 城镇污泥特性及处置过程碳排放影响的研究[J]. 环境科技, 2023, 36(1): 21-25. DOI:10.19824/j.cnki.cn32-1786/x.2023.0007. [18] 吕丰锦,刘俊新. 我国南北方城市污水处理厂污泥性质比较分析[J]. 给水排水, 2016, 52(S1): 63-66. DOI:10.13789/j.cnki.wwe1964.2016.0341. [19] GIANICO A, BRAGUGLIA C M, CESARINI R,et al. Reduced temperature hydrolysis at 134 ℃ before thermophilic anaerobic digestion of waste activated sludge at increasing organic load[J]. Bioresource Technology, 2013, 143: 96-103. DOI: 10.1016/j.biortech.2013.05.069. [20] 朱赵冉,黄显怀,唐玉朝,等. 低速搅拌球磨破解剩余污泥高效释放碳源[J]. 中国给水排水, 2021, 37(13): 1-6. DOI:10.19853/j.zgjsps.1000-4602.2021.13.001. [21] 黄惠莹,周兴求. 微波预处理对厌氧颗粒污泥发酵产氢的影响[J]. 中国给水排水, 2010, 26(23): 13-16. DOI:10.19853/j.zgjsps.1000-4602.2010.23.004. [22] 田禹,方琳,黄君礼. 微波辐射预处理对污泥结构及脱水性能的影响[J]. 中国环境科学, 2006, 26(4): 459-463. DOI:10.3321/j.issn:1000-6923.2006.04.017. [23] GULSEN AKBAY H E, DIZGE N,KUMBUR H. Enhancing biogas production of anaerobic co-digestion of industrial waste and municipal sewage sludge with mechanical, chemical, thermal, and hybrid pretreatment[J]. Bioresource Technology, 2021, 340: 125688. DOI: 10.1016/j.biortech.2021.125688. [24] 刘永剑,刘宇雷,徐学信,等. 超声/厌氧消化处理剩余污泥参数优化及机理研究[J]. 中国给水排水, 2022, 38(5): 84-90. DOI:10.19853/j.zgjsps.1000-4602.2022.05.014. [25] 蒋建国,张妍,张群芳,等. 超声波对污泥破解及改善其厌氧消化效果的研究[J]. 环境科学, 2008, 29(10): 2815-2819. DOI:10.13227/j.hjkx.2008.10.020. [26] NGUYEN D D, YOON Y S, NGUYEN N D,et al. Enhanced efficiency for better wastewater sludge hydrolysis conversion through ultrasonic hydrolytic pretreatment[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 244-252. DOI: 10.1016/j.jtice.2016.12.019. [27] 胡凯,赵庆良,邱微. 冷冻预处理对剩余污泥性质的影响研究[J]. 水工业市场, 2011(6): 37-41. [28] HU J W, LI Z, WU Z G,et al. Potassium ferrate coupled with freezing method enhances methane production from sludge anaerobic digestion[J]. Bioresource Technology, 2021, 332: 125112. DOI: 10.1016/j.biortech.2021.125112. [29] SINGH D K,GARG A. Thermal hydrolysis of sewage sludge: improvement in biogas generation and prediction of global warming potential[J]. Waste Management & Research: 1-10. [2023-05-27]. https://doi.org/10.1177/0734242X231171044. DOI: 10.1177/0734242X231171044. [30] ZHANG L, WANG X P, CHEN Y,et al. Medium-chain fatty acid production from thermal hydrolysed sludge without external electron donor supplementation[J]. Bioresource Technology, 2023, 374: 128805. DOI: 10.1016/j.biortech.2023.128805. [31] 王治军,王伟. 热水解预处理改善污泥的厌氧消化性能[J]. 环境科学, 2005, 26(1): 68-71. DOI:10.13227/j.hjkx.2005.01.015. [32] 金文杰. 市政污泥微波预处理及无害化处理工艺研究[J]. 市政技术, 2021, 39(9): 169-173. DOI: 10.19922/j.1009-7767.2021.09.169. [33] NEUMANN P, PESANTE S, VENEGAS M,et al. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge[J]. Reviews in Environmental Science and Bio/technology, 2016, 15(2): 173-211. DOI: 10.1007/s11157-016-9396-8. [34] 刘永剑,刘宇雷,徐学信,等. 超声/厌氧消化处理剩余污泥参数优化及机研究[J]. 中国给水排水, 2022, 38(5): 84-90. DOI:10.19853/j.zgjsps.1000-4602.2022.05.014. [35] 任征然,李伟,高金华,等. 热水解高级厌氧消化研究与应用进展[J]. 水处理技术, 2021, 47(11): 26-30, 53. DOI:10.16796/j.cnki.1000-3770.2021.11.005. [36] CHIU Y C, CHANG C N, LIN J G,et al. Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion[J]. Water Science and Technology, 1997, 36(11): 155-162. DOI: 10.1016/S0273-1223(97)00681-1. [37] 张万钦,戚丹丹,吴树彪,等. 不同预处理方式对污泥厌氧发酵的影响[J]. 农业机械学报, 2014, 45(9): 187-198. DOI:10.6041/j.issn.1000-1298.2014.09.031. [38] 宋青青,任宏宇,孔凡英,等. 不同预处理方法促进剩余污泥发酵制氢研究进展[J]. 中国环境科学, 2021, 41(10): 4736-4744. DOI:10.19674/j.cnki.issn1000-6923.20210618.008. [39] 贾舒婷,张栋,赵建夫,等. 不同预处理方法促进初沉/剩余污泥厌氧发酵产沼气研究进展[J]. 化工进展, 2013, 32(1): 193-198. DOI:10.3969/j.issn.1000-6613.2013.01.033. [40] 李震,阮大年. 碱预处理工艺强化脱水污泥厌氧消化[J]. 净水技术, 2020, 39(7): 145-150. DOI:10.15890/j.cnki.jsjs.2020.07.024. [41] 金春姬,赵振焕,彭刚,等. 添加碱渣对污泥厌氧消化的影响研究[J]. 中国给水排水, 2008, 24(11): 30-33. DOI:10.3321/j.issn:1000-4602.2008.11.009. [42] MARYAM A, ZESHA N, BADSHAH M,et al. Enhancing methane production from dewatered waste activated sludge through alkaline and photocatalytic pretreatment[J]. Bioresource Technology, 2021, 325: 124677. DOI: 10.1016/j.biortech.2021.124677. [43] ZHANG S T, GUO H G, DU L Z, et al. Influence of NaOH and thermal pretreatment on dewatered activated sludge solubilisation and subsequent anaerobic digestion: focused on high-solid state[J]. Bioresource Technology, 2015, 185: 171-177. DOI: 10.1016/j.biortech.2015.02.050. [44] DEVLIN D C, ESTEVES S R R, DINSDALE R M,et al. The effect of acid pretreatment on the anaerobic digestion and dewatering of waste activated sludge[J]. Bioresource Technology, 2011, 102(5): 4076-4082. DOI: 10.1016/j.biortech.2010.12.043. [45] CHEN Y G, JIANG S, YUAN H Y, et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41(3): 683-689. DOI: 10.1016/j.watres.2006.07.030. [46] AHN K H, PARK K Y, MAENG S K,et al. Ozonation of wastewater sludge for reduction and recycling[J]. Water Science & Technology, 2002, 46(10): 71-77. DOI: 10.2166/wst.2002.0293. [47] 石璞玉,孙力平,谢春雨,等. 臭氧预处理对剩余污泥特性及厌氧消化的影响[J]. 环境工程学报, 2017, 11(6): 3740-3746. DOI:10.12030/j.cjee.201609252. [48] CHACANA J, LABELLE M A, LAPORTE A,et al. Ozonation of primary sludge and digested sludge to increase methane production in a chemically enhanced primary treatment facility[J]. Ozone: Science & Engineering, 2017, 39(3): 148-158. DOI: 10.1080/01919512.2017.1301247. [49] CHACANA J, ALIZADEH S, LABELLE M A,et al. Effect of ozonation on anaerobic digestion sludge activity and viability[J]. Chemosphere, 2017, 176: 405-411. DOI: 10.1016/j.chemosphere.2017.02.108. [50] HASHIMOTO K, NAKAI S, MOTOSHIGE H,et al. Sludge reduction in a full-scale wastewater treatment plant using ultra-fine-and micro-bubble ozonation[J]. Ozone: Science & Engineering, 2021, 43(2): 127-135. DOI: 10.1080/01919512.2020.1863742. [51] AMUDHA V, KAVITHA S, FERNANDEZ C,et al. Effect of deflocculation on the efficiency of sludge reduction by Fenton process[J]. Environmental Science and Pollution Research International, 2016, 23(19): 19281-19291. DOI: 10.1007/s11356-016-7118-y. [52] YILDIZ S,CÖMERT A. Fenton process effect on sludge disintegration[J]. International Journal of Environmental Health Research, 2020, 30(1): 89-104. DOI: 10.1080/09603123.2019.1576162. [53] DEWIL R, APPELS L, BAEYENS J,et al. Peroxidation enhances the biogas production in the anaerobic digestion of biosolids[J]. Journal of Hazardous Materials, 2007, 146(3): 577-581. DOI: 10.1016/j.jhazmat.2007.04.059. [54] WANG M W, ZHAO Z Q, ZHANG Y B. Disposal of Fenton sludge with anaerobic digestion and the roles of humic acids involved in Fenton sludge[J]. Water Research, 2019, 163: 114900. DOI: 10.1016/j.watres.2019.114900. [55] YILDIZ S, OLABI A. Effect of Fe2+ and Fe0 applied photo-Fenton processes on sludge disintegration[J]. Chemical Engineering & Technology, 2021, 44(1): 95-103. DOI: 10.1002/ceat.202000269. [56] ZHANG T T, WANG Q L, YE L,et al. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown[J]. Scientific Reports, 2015, 5: 16631. DOI: 10.1038/srep16631. [57] YILDIZ S,OLABI A. Application of photocatalysis methods to enhance sludge disintegration[J]. Waste and Biomass Valorization, 2021, 12(8): 4419-4431. DOI: 10.1007/s12649-020-01334-5. [58] XIAO K K, PEI K Y, WANG H,et al. Citric acid assisted Fenton-like process for enhanced dewaterability of waste activated sludge with in-situ generation of hydrogen peroxide[J]. Water Research, 2018, 140: 232-242. DOI: 10.1016/j.watres.2018.04.051. [59] YUAN D L, ZHANG C, TANG S F, et al. Enhancing CaO2 Fenton-like process by Fe(II)-oxalic acid complexation for organic wastewater treatment[J]. Water Research, 2019, 163: 114861. DOI: 10.1016/j.watres.2019.114861. [60] YE F X, JI H Z, YE Y F. Effect of potassium ferrate on disintegration of waste activated sludge (WAS)[J]. Journal of Hazardous Materials, 2012, 219/220: 164-168. DOI: 10.1016/j.jhazmat.2012.03.070. [61] YE F X, LIU X W, LI Y. Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge[J]. Journal of Hazardous Materials, 2012, 199/200: 158-163. DOI: 10.1016/j.jhazmat.2011.10.071. [62] ZHANG X H, LEI H Y, CHEN K,et al. Effect of potassium ferrate (K2FeO4) on sludge dewaterability under different pH conditions[J]. Chemical Engineering Journal, 2012, 210: 467-474. DOI: 10.1016/j.cej.2012.09.013. [63] HU J W, LI Z, ZHANG A,et al. Using a strong chemical oxidant, potassium ferrate (K2FeO4), in waste activated sludge treatment: a review[J]. Environmental Research, 2020, 188: 109764. DOI: 10.1016/j.envres.2020.109764. [64] NING X A, FENG Y F, WU J J, et al. Effect of K2FeO4/US treatment on textile dyeing sludge disintegration and dewaterability[J]. Journal of Environmental Management, 2015, 162: 81-86. DOI: 10.1016/j.jenvman.2015.07.001. [65] ZHANG Y P, HU R Q, LI F,et al. Effect and mechanism of waste-activated sludge disintegration treated by composite ferrate solution[J]. Environmental Engineering Science, 2019, 36(5): 530-540. DOI: 10.1089/ees.2018.0402. [66] WU C, JIN L Y, ZHANG P Y, et al. Effects of potassium ferrate oxidation on sludge disintegration, dewaterability and anaerobic biodegradation[J]. International Biodeterioration & Biodegradation, 2015, 102: 137-142. DOI: 10.1016/j.ibiod.2015.01.002. [67] HU J W, GUO B, LI Z,et al. Revealing the mechanisms for potassium ferrate affecting methane production from anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2020, 317: 124022. DOI: 10.1016/j.biortech.2020.124022. [68] HE H Y, LIU Y L, WANG X S, et al. Effects of newly prepared alkaline ferrate on sludge disintegration and methane production: reaction mechanism and model simulation[J]. Chemical Engineering Journal, 2018, 343: 520-529. DOI: 10.1016/j.cej.2018.03.031. [69] HE Z W, LIU W Z, GAO Q,et al. Potassium ferrate addition as an alternative pre-treatment to enhance short-chain fatty acids production from waste activated sludge[J]. Bioresource Technology, 2018, 247: 174-181. DOI: 10.1016/j.biortech.2017.09.073. [70] 黄翔峰,穆天帅,申昌明,等. 表面活性剂在剩余污泥处理中的作用机制研究进展[J]. 环境工程学报, 2016, 10(12): 6819-6826. DOI:10.12030/j.cjee.201507058. [71] BAO Q H, HUANG L X, XIU J L, et al. Study on the treatment of oily sludge in oil fields with lipopeptide/sophorolipid complex bio-surfactant[J]. Ecotoxicology and Environmental Safety, 2021, 212: 111964. DOI: 10.1016/j.ecoenv.2021.111964. [72] MULLIGAN C N. Recent advances in the environmental applications of biosurfactants[J]. Current Opinion in Colloid & Interface Science, 2009, 14(5): 372-378. DOI: 10.1016/j.cocis.2009.06.005. [73] MAO X H, JIANG R, XIAO W,et al. Use of surfactants for the remediation of contaminated soils: a review[J]. Journal of Hazardous Materials, 2015, 285: 419-435. DOI: 10.1016/j.jhazmat.2014.12.009. [74] XU Q X, LUO T Y, WU R L,et al. Rhamnolipid pretreatment enhances methane production from two-phase anaerobic digestion of waste activated sludge[J]. Water Research, 2021, 194: 116909. DOI: 10.1016/j.watres.2021.116909. [75] LI J Q, LIU W Z, REN R Y, et al. Weakened adhesion force between extracellular polymeric substances of waste activated sludge caused by rhamnolipid leading to more efficient carbon release[J]. Science of the Total Environment, 2019, 692: 892-902. DOI: 10.1016/j.scitotenv.2019.07.348. [76] LI X M, SUI K X, ZHANG J M, et al. Revealing the mechanisms of rhamnolipid enhanced hydrogen production from dark fermentation of waste activated sludge[J]. Science of the Total Environment, 2022, 806(Pt 1): 150347. DOI: 10.1016/j.scitotenv.2021.150347. [77] LI J Q, LIU W Z, CAI W W, et al. Applying rhamnolipid to enhance hydrolysis and acidogenesis of waste activated sludge: retarded methanogenic community evolution and methane production[J]. RSC Advances, 2019, 9(4): 2034-2041. DOI: 10.1039/c8ra08993k. [78] FERREIRA T S, DE SOUSA T A T, DIÓGENES H J F,et al. Assessment of bioconversion performance after alkaline fermentation process to recover biogas and nutrients[J]. Desalination and Water Treatment, 2022, 268: 205-214. DOI: 10.5004/dwt.2022.28740. [79] PAŹDZIOR K, DOMIŃSKA M,OLAK-KUCHARCZYK M. Ozone as a catalyst of surplus activated sludge hydrolysis for the biogas production enhancement[J]. Catalysts, 2022, 12(9):1060. DOI: 10.3390/catal12091060. [80] SUN Y Q, ZHANG M Y, SONG T,et al. Moderate potassium ferrate dosage enhances methane production from the anaerobic digestion of waste activated sludge[J/OL]. Environmental Technology: 1-10. [2023-05-26]. https://doi.org/10.1080/09593330.2022.2152389. DOI: 10.1080/09593330.2022.2152389. [81] YANG Q, LUO K, LI X M,et al. Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes[J]. Bioresource Technology, 2010, 101(9): 2924-2930. DOI: 10.1016/j.biortech.2009.11.012. [82] TAS O D, YANGIN-GOMEC C, OLMEZ-HANCI T, et al. Comparative assessment of sludge pre-treatment techniques to enhance sludge dewaterability and biogas production[J]. Clean-Soil, Air, Water, 2018, 46(1):1700569. DOI: 10.1002/clen.201700569. [83] MERLIN CHRISTY P, GOPINATH L R,DIVYA D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 167-173. DOI: 10.1016/j.rser.2014.03.010. [84] LIU W, ZHONG X, CHENG L,et al. Cellular and compositional insight into the sludge dewatering process using enzyme treatment[J]. Environmental Science and Pollution Research, 2018, 25(29): 28942-28953. DOI: 10.1007/s11356-018-2854-9. [85] XIN X D, HE J G, FENG J H, et al. Solubilization augmentation and bacterial community responses triggered by co-digestion of a hydrolytic enzymes blend for facilitating waste activated sludge hydrolysis process[J]. Chemical Engineering Journal, 2016, 284: 979-988. DOI: 10.1016/j.cej.2015.09.060. |
[1] | NI Zhi, WEN Zhong, WANG Can, ZHANG Yewei, YANG Shengpeng, WANG Zhenyu. Optimal Operation of Integrated Energy System with Photothermal MRH and Gas Doping [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 54-66. |
|