Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 30-40.doi: 10.16088/j.issn.1001-6600.2023051402

Previous Articles     Next Articles

Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network

XU Lunhui1,2*, LI Jinlong2, LI Ruonan3, CHEN Junyu2   

  1. 1. School of Computer Science, Guangdong University of Science and Technology, Dongguan Guangdong 523083, China;
    2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China;
    3. College of Computer Science and Technology, Harbin Institute of Technology(Shenzhen) Shenzhen Guangdong 518055, China
  • Received:2023-05-14 Revised:2023-06-21 Published:2024-04-22

Abstract: For the issue of missing data occurring in the data collection process of intelligent transportation systems, a road network traffic data recovery model is proposed in this paper based on the dynamic generative adversarial network. Firstly, the approach in this paper are constructed various missing traffic data matrices by considering the spatial-temporal properties of traffic data and the set missing patterns and missing rates. Then iteratively trains a GAN was composed of two fully connected neural networks based on a game idea. By introducing a novel dynamic adaptive mechanism, this study can automatically identify the optimal number of iterations of the generator and discriminator during the model computation, and finally generates the complete traffic data matrix and repair the missing values. California PeMS and Guangzhou traffic speed datasets are used to complete the D-GAN model construction, and multiple evaluation metrics are employed to assess the repair performance of D-GAN. Experimental results show that the repair accuracy of D-GAN is higher for random missing patterns compared with non-random missing patterns; and the repair accuracy of D-GAN degrades accelerated with increasing missing rates. However, the repair performance of D-GAN outperforms the baseline models (e.g., BGCP, prophet-RF, and GAIN) under various missing conditions.

Key words: intelligent transportation systems, traffic data recovery, generative adversarial network, game idea, dynamic adaptive mechanism

CLC Number:  U495
[1] LI H P, LI M, LIN X, et al. A spatiotemporal approach for traffic data imputation with complicated missing patterns[J]. Transportation Research Part C: Emerging Technologies, 2020, 119: 102730. DOI:10.1016/j.trc.2020.102730.
[2] LI J L, WU P, GUO H C, et al. Multivariate transfer passenger flow forecasting with data imputation by joint deep learning and matrix factorization[J]. Applied Sciences, 2023, 13(9): 5625. DOI:10.3390/app13095625.
[3] LI Y B, LI Z H, LI L. Missing traffic data: comparison of imputation methods[J]. IET Intelligent Transport Systems, 2014, 8(1): 51-57. DOI:10.1049/iet-its.2013.0052.
[4] LI J L, WU P, LI R N, et al. ST-CRMF: compensated residual matrix factorization with spatial-temporal regularization for graph-based time series forecasting[J]. Sensors, 2022, 22(15): 5877. DOI:10.3390/s22155877.
[5] MA X L, LUAN S, DING C, et al. Spatial interpolation of missing annual average daily traffic data using copula-based model[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(3): 158-170. DOI:10.1109/MITS.2019.2919504.
[6] HAN T Y, WADA K, OGUCHI T. Large-scale traffic data imputation using matrix completion on graphs[C]// 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Piscataway, NJ: IEEE, 2019: 2252-2258. DOI:10.1109/ITSC.2019.8917365.
[7] LI J L, XU L H, LI R N, et al. Deep spatial-temporal bi-directional residual optimisation based on tensor decomposition for traffic data imputation on urban road network[J]. Applied Intelligence, 2022, 52(10): 11363-11381. DOI:10.1007/s10489-021-03060-4.
[8] REN P, CHEN X Y, SUN L J, et al. Incremental Bayesian matrix/tensor learning for structural monitoring data imputation and response forecasting[J]. Mechanical Systems and Signal Processing, 2021, 158: 107734. DOI:10.1016/j.ymssp.2021.107734.
[9] 陆文琦,周天,谷远利,等.基于张量分解理论的车道级交通流数据修复算法[J].吉林大学学报(工学版),2021,51(5): 1708-1715.DOI:10.13229/j.cnki.jdxbgxb20200535.
[10] 武江南,张红梅,赵永梅,等.基于张量奇异值理论的交通数据重构方法[J].计算机应用研究,2022,39(5): 1449-1453,1459.DOI:10.19734/j.issn.1001-3695.2021.10.0429.
[11] CHEN X Y, LEI M Y, SAUNIER N, et al. Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12301-12310. DOI:10.1109/TITS.2021.3113608.
[12] RAN B, TAN H C, WU Y K, et al. Tensor based missing traffic data completion with spatial-temporal correlation[J].Physica A: Statistical Mechanics and Its Applications, 2016, 446: 54-63. DOI:10.1016/j.physa.2015.09.105.
[13] ROLL J. Daily traffic count imputation for bicycle and pedestrian traffic: comparing existing methods with machine learning approaches[J]. Transportation Research Record, 2021, 2675(11): 1428-1440. DOI:10.1177/03611981211027161.
[14] ZHANG Y, LIU Y C. Data imputation using least squares support vector machines in urban arterial streets[J]. IEEE Signal Processing Letters, 2009, 16(5): 414-417. DOI:10.1109/LSP.2009.2016451.
[15] 裴莉莉,孙朝云,韩雨希,等.基于SSC与XGBoost的高速公路异常收费数据修复算法[J].吉林大学学报(工学版),2022,52(10): 2325-2332.DOI:10.13229/j.cnki.jdxbgxb20210231.
[16] TANG J J, CHEN X Q, HU Z, et al. Traffic flow prediction based on combination of support vector machine and data denoising schemes[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 534: 120642. DOI:10.1016/j.physa.2019.03.007.
[17] 李振亮,李波.基于矩阵分解的卷积神经网络改进方法[J].计算机应用,2023,43(3): 685-691.DOI:10.11772/j.issn.1001-9081.2022010032.
[18] YANG J M, PENG Z R, LIN L. Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and Graph Laplacian regularized matrix factorization[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103228. DOI:10.1016/j.trc.2021.103228.
[19] 钱斌,郑楷洪,陈子鹏,等.基于残差连接长短期记忆网络的时间序列修复模型[J].计算机应用,2021,41(1): 243-248.DOI:10.11772/j.issn.1001-9081.2020060928.
[20] ZHANG Z C, LIN X, LI M, et al. A customized deep learning approach to integrate network-scale online traffic data imputation and prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103372. DOI:10.1016/j.trc.2021.103372.
[21] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. DOI:10.1145/3422622.
[22] 徐东伟,彭航,商学天,等.基于图自编码-生成对抗网络的路网数据修复[J].交通运输系统工程与信息,2021,21(6): 33-41.DOI:10.16097/j.cnki.1009-6744.2021.06.005.
[23] ZHANG S C. Nearest neighbor selection for iterativelykNN imputation[J]. Journal of Systems and Software, 2012, 85(11): 2541-2552. DOI:10.1016/j.jss.2012.05.073.
[24] CHAUDHRY A, LI W, BASRI A, et al. A method for improving imputation and prediction accuracy of highly seasonal univariate data with large periods of missingness[J]. Wireless Communications and Mobile Computing, 2019,2019: 4039758. DOI:10.1155/2019/4039758.
[25] CHEN X Y, HE Z C, SUN L J. A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 73-84. DOI:10.1016/j.trc.2018.11.003.
[26] YOON J, JORDON J, SCHAAR M. GAIN: missing data imputation using generative adversarial nets[J]. Proceedings of Machine Learning Research, 2018, 80: 5689-5698.
[27] LI J L, SUN L J, LI R N, et al. Application ofsiSVR-Vis/NIR to the nondestructive determination of acid detergent fiber content in corn straw[J]. Optik, 2020, 202: 163717. DOI:10.1016/j.ijleo.2019.163717.
[28] LI R N, QIN Y, WANG J B, et al. AMGB: trajectory prediction using attention-based mechanism GCN-BiLSTM in IOV[J]. Pattern Recognition Letters, 2023, 169: 17-27. DOI:10.1016/j.patrec.2023.03.006.
[1] CAI Likun, WU Yunbing, CHEN Ganlin, LIU Chongling, LIAO Xiangwen. Category Text Generation Based on Generative Adversarial Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 79-90.
[2] KUANG Xianyan, ZHU Lei, WU Yun, XU Chen. Bus Video Detection Based on Adaboost Algorithm and Color Feature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 9-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YUAN Jingjing, ZHENG Yuzhao, XU Chenfeng, YIN Tingjie. Advances in Cytoplasmic Delivery Strategies for Non-Endocytosis-Dependent Biomolecules[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 1 -8 .
[2] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[3] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[4] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[5] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55 -68 .
[6] GAN Youchun, WANG Can, HE Xuhui, ZHANG Yu, ZHANG Xuefei, WANG Fan, YU Yazhou. Joint Optimal Operation of Integrated Electricity-Hydrogen-Heat Energy System Based on Concentrating Solar Power Plant and Flexible Load[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 69 -83 .
[7] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[8] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .
[9] YU Qian, CHEN Qingfeng, HE Naixu, HAN Zongzhao, LU Jiahui. Genetic Algorithm for Community Detection Accelerated by Matrix Operations[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 105 -119 .
[10] LONG Fang, CAI Jing, ZHU Yan. Analysis of Reliability in a Multicomponent Stress-Strength Model for Lomax Distribution under Progressive type-Ⅱ Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 120 -130 .