Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (2): 30-40.doi: 10.16088/j.issn.1001-6600.2023051402
Previous Articles Next Articles
XU Lunhui1,2*, LI Jinlong2, LI Ruonan3, CHEN Junyu2
[1] LI H P, LI M, LIN X, et al. A spatiotemporal approach for traffic data imputation with complicated missing patterns[J]. Transportation Research Part C: Emerging Technologies, 2020, 119: 102730. DOI:10.1016/j.trc.2020.102730. [2] LI J L, WU P, GUO H C, et al. Multivariate transfer passenger flow forecasting with data imputation by joint deep learning and matrix factorization[J]. Applied Sciences, 2023, 13(9): 5625. DOI:10.3390/app13095625. [3] LI Y B, LI Z H, LI L. Missing traffic data: comparison of imputation methods[J]. IET Intelligent Transport Systems, 2014, 8(1): 51-57. DOI:10.1049/iet-its.2013.0052. [4] LI J L, WU P, LI R N, et al. ST-CRMF: compensated residual matrix factorization with spatial-temporal regularization for graph-based time series forecasting[J]. Sensors, 2022, 22(15): 5877. DOI:10.3390/s22155877. [5] MA X L, LUAN S, DING C, et al. Spatial interpolation of missing annual average daily traffic data using copula-based model[J]. IEEE Intelligent Transportation Systems Magazine, 2019, 11(3): 158-170. DOI:10.1109/MITS.2019.2919504. [6] HAN T Y, WADA K, OGUCHI T. Large-scale traffic data imputation using matrix completion on graphs[C]// 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Piscataway, NJ: IEEE, 2019: 2252-2258. DOI:10.1109/ITSC.2019.8917365. [7] LI J L, XU L H, LI R N, et al. Deep spatial-temporal bi-directional residual optimisation based on tensor decomposition for traffic data imputation on urban road network[J]. Applied Intelligence, 2022, 52(10): 11363-11381. DOI:10.1007/s10489-021-03060-4. [8] REN P, CHEN X Y, SUN L J, et al. Incremental Bayesian matrix/tensor learning for structural monitoring data imputation and response forecasting[J]. Mechanical Systems and Signal Processing, 2021, 158: 107734. DOI:10.1016/j.ymssp.2021.107734. [9] 陆文琦,周天,谷远利,等.基于张量分解理论的车道级交通流数据修复算法[J].吉林大学学报(工学版),2021,51(5): 1708-1715.DOI:10.13229/j.cnki.jdxbgxb20200535. [10] 武江南,张红梅,赵永梅,等.基于张量奇异值理论的交通数据重构方法[J].计算机应用研究,2022,39(5): 1449-1453,1459.DOI:10.19734/j.issn.1001-3695.2021.10.0429. [11] CHEN X Y, LEI M Y, SAUNIER N, et al. Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12301-12310. DOI:10.1109/TITS.2021.3113608. [12] RAN B, TAN H C, WU Y K, et al. Tensor based missing traffic data completion with spatial-temporal correlation[J].Physica A: Statistical Mechanics and Its Applications, 2016, 446: 54-63. DOI:10.1016/j.physa.2015.09.105. [13] ROLL J. Daily traffic count imputation for bicycle and pedestrian traffic: comparing existing methods with machine learning approaches[J]. Transportation Research Record, 2021, 2675(11): 1428-1440. DOI:10.1177/03611981211027161. [14] ZHANG Y, LIU Y C. Data imputation using least squares support vector machines in urban arterial streets[J]. IEEE Signal Processing Letters, 2009, 16(5): 414-417. DOI:10.1109/LSP.2009.2016451. [15] 裴莉莉,孙朝云,韩雨希,等.基于SSC与XGBoost的高速公路异常收费数据修复算法[J].吉林大学学报(工学版),2022,52(10): 2325-2332.DOI:10.13229/j.cnki.jdxbgxb20210231. [16] TANG J J, CHEN X Q, HU Z, et al. Traffic flow prediction based on combination of support vector machine and data denoising schemes[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 534: 120642. DOI:10.1016/j.physa.2019.03.007. [17] 李振亮,李波.基于矩阵分解的卷积神经网络改进方法[J].计算机应用,2023,43(3): 685-691.DOI:10.11772/j.issn.1001-9081.2022010032. [18] YANG J M, PENG Z R, LIN L. Real-time spatiotemporal prediction and imputation of traffic status based on LSTM and Graph Laplacian regularized matrix factorization[J]. Transportation Research Part C: Emerging Technologies, 2021, 129: 103228. DOI:10.1016/j.trc.2021.103228. [19] 钱斌,郑楷洪,陈子鹏,等.基于残差连接长短期记忆网络的时间序列修复模型[J].计算机应用,2021,41(1): 243-248.DOI:10.11772/j.issn.1001-9081.2020060928. [20] ZHANG Z C, LIN X, LI M, et al. A customized deep learning approach to integrate network-scale online traffic data imputation and prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103372. DOI:10.1016/j.trc.2021.103372. [21] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. DOI:10.1145/3422622. [22] 徐东伟,彭航,商学天,等.基于图自编码-生成对抗网络的路网数据修复[J].交通运输系统工程与信息,2021,21(6): 33-41.DOI:10.16097/j.cnki.1009-6744.2021.06.005. [23] ZHANG S C. Nearest neighbor selection for iterativelykNN imputation[J]. Journal of Systems and Software, 2012, 85(11): 2541-2552. DOI:10.1016/j.jss.2012.05.073. [24] CHAUDHRY A, LI W, BASRI A, et al. A method for improving imputation and prediction accuracy of highly seasonal univariate data with large periods of missingness[J]. Wireless Communications and Mobile Computing, 2019,2019: 4039758. DOI:10.1155/2019/4039758. [25] CHEN X Y, HE Z C, SUN L J. A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2019, 98: 73-84. DOI:10.1016/j.trc.2018.11.003. [26] YOON J, JORDON J, SCHAAR M. GAIN: missing data imputation using generative adversarial nets[J]. Proceedings of Machine Learning Research, 2018, 80: 5689-5698. [27] LI J L, SUN L J, LI R N, et al. Application ofsiSVR-Vis/NIR to the nondestructive determination of acid detergent fiber content in corn straw[J]. Optik, 2020, 202: 163717. DOI:10.1016/j.ijleo.2019.163717. [28] LI R N, QIN Y, WANG J B, et al. AMGB: trajectory prediction using attention-based mechanism GCN-BiLSTM in IOV[J]. Pattern Recognition Letters, 2023, 169: 17-27. DOI:10.1016/j.patrec.2023.03.006. |
[1] | CAI Likun, WU Yunbing, CHEN Ganlin, LIU Chongling, LIAO Xiangwen. Category Text Generation Based on Generative Adversarial Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 79-90. |
[2] | KUANG Xianyan, ZHU Lei, WU Yun, XU Chen. Bus Video Detection Based on Adaboost Algorithm and Color Feature [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 9-18. |
|