Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 54-66.doi: 10.16088/j.issn.1001-6600.2023042407

Previous Articles     Next Articles

Optimal Operation of Integrated Energy System with Photothermal MRH and Gas Doping

NI Zhi1, WEN Zhong1*, WANG Can1,2, ZHANG Yewei1, YANG Shengpeng1, WANG Zhenyu1   

  1. 1. School of Electrical and New Energy, China Three Gorges University, Yichang Hubei 443002, China;
    2. Engineering Research Centre for Smart Energy Technology(China Three Gorges University), Yichang Hubei 443002, China
  • Received:2023-04-24 Revised:2023-06-12 Online:2024-01-25 Published:2024-01-19

Abstract: In the context of promoting the low carbon transition of Integrated Energy Systems (IES), a model is proposed in which Photothermal Methane Reforming to Hydrogen (PMRH) and Gas Doping with Liquid Carbon Capture Storage (LCCS) operate together. The optimal scheduling model of the system is proposed. A model of the PMRH plant and the electrolyser is developed first, followed by a model of the hydrogen-doped gas units and the carbon capture plant to address the carbon emission issue. Based on this, the IES low carbon optimization model is constructed with the objective of minimizing economic and environmental costs, taking into account constraints such as power and hydrogen doping ratios. The analysis of different scenarios of the constructed model shows that the total cost of the system is reduced by 27.9% and the carbon emissions are reduced by 28.2%, which verifies the advantages of the proposed model in terms of economy and low carbon.

Key words: integrated energy system, methane reforming to hydrogen, hydrogen doping, CCS, carbon tax

CLC Number:  TM73;TK01
[1] 高雅.构建综合能源系统服务能源低碳转型[N].国家电网报, 2023-01-31(05).
[2] 袁铁江, 孙传帅, 谭捷, 等.考虑氢负荷的新型电力系统电源规划[J].中国电机工程学报, 2022, 42(17): 6316-6325.DOI: 10.13334/j.0258-8013.pcsee.210948.
[3] 林俐, 郑馨姚, 周龙文.基于燃氢燃气轮机的风光火储多能互补优化调度[J].电网技术, 2022, 46(8): 3007-3016.DOI: 10.13335/j.1000-3673.pst.2022.0059.
[4] 陈维荣, 冉韵早, 韩莹, 等.考虑两阶段P2G的区域综合能源系统优化调度[J/OL].西南交通大学学报: 1-9[2023-03-11].http://kns.cnki.net/kcms/detail/51.1277.U.20211230.0937.002.html.DOI: 10.3969/j.issn.0258-2724.20210605.
[5] 崔杨, 闫石, 仲悟之, 等.含电转气的区域综合能源系统热电优化调度[J].电网技术, 2020, 44(11): 4254-4263.DOI: 10.13335/j.1000-3673.pst.2019.2468.
[6] 刘英培, 黄寅峰.考虑碳排权供求关系的多区域综合能源系统联合优化运行[J].电工技术学报, 2023, 38(13): 3459-3472.DOI: 10.19595/j.cnki.1000-6753.tces.220595.
[7] 李玉婷, 彭敏放.考虑碳捕集与甲烷化的综合能源微网分布式优化调度[J].电力自动化设备, 2023, 43(3): 46-53.DOI: 10.16081/j.epae.202207026.
[8] 樊伟杰, 崔双喜, 李浩博.考虑两阶段P2G和燃气掺氢的综合能源系统双层优化调度[J/OL].电测与仪表: 1-11[2023-03-30].http://kns.cnki.net/kcms/detail/23.1202.TH.20230322.0956.004.html.
[9] 邱彬, 慕会宾, 王凯, 等.计及氢气天然气混合运输的氢耦合综合能源系统优化调度[J].电力系统及其自动化学报, 2022, 34(8): 51-59.DOI: 10.19635/j.cnki.csu-epsa.000935.
[10] 周步祥, 陈阳, 臧天磊, 等.考虑气网掺氢与低碳奖赏的气电耦合系统优化调度[J].电力自动化设备, 2023, 43(2): 1-8.DOI: 10.16081/j.epae.202207021.
[11] 范宏, 杨忠权, 夏世威.考虑阶梯式碳交易机制的混氢天然气综合能源系统低碳经济运行[J/OL].上海交通大学学报: 1-21[2023-03-23].https://doi.org/10.16183/j.cnki.jsjtu.2022.377. DOI: 10.16183/j.cnki.jsjtu.2022.377.
[12] ZARE A A D, YARI M, NAMI H, et al. Low-carbon hydrogen, power and heat production based on steam methane reforming and chemical looping combustion[J]. Energy Conversion and Management, 2023, 279: 116752. DOI: 10.1016/j.enconman.2023.116752.
[13] 何展军, 黄敏, 林铁军, 等.光热催化甲烷干重整研究进展[J].物理化学学报, 2023, 39(9): 2212060.DOI: 10.3866/PKU.WHXB202212060.
[14] 刘俊伯, 郭欣, 张朔昕, 等.不同结构微反应器下甲烷水蒸气重整制氢性能对比[J].过程工程学报, 2022, 22(12): 1729-1738.DOI: 10.12034/j.issn.1009-606X.221327.
[15] 雷宇, 袁熹, 王颖, 等.基于太阳能的甲烷重整制氢技术研究进展[J].太阳能学报, 2022, 43(12): 154-160.DOI: 10.19912/j.0254-0096.tynxb.2021-0715.
[16] 魏鑫, 李文甲, 裴刚, 等.基于光谱分频的太阳能光伏-甲烷重整互补发电系统[J].工程热物理学报, 2019, 40(3): 497-504.
[17] CHISALITA D A, CORMOS C C. Techno-economic assessment of hydrogen production processes based on various natural gas chemical looping systems with carbon capture[J]. Energy, 2019, 181: 331-344. DOI: 10.1016/j.energy.2019.05.179.
[18] HONG S, LEE J, CHO H, et al. Multi-objective optimization of CO2 emission and thermal efficiency for on-site steam methane reforming hydrogen production process using machine learning[J]. Journal of Cleaner Production, 2022, 359: 132133. DOI: 10.1016/j.jclepro.2022.132133.
[19] 李勇霞, 段立强, 潘盼, 等.基于太阳能热驱动甲烷重整制氢的燃料电池发电系统性能研究[J].太阳能学报, 2022, 43(9): 131-138.DOI: 10.19912/j.0254-0096.tynxb.2021-0239.
[20] 金健, 林鹏翥, 李建兰, 等.太阳能甲烷重整热化学互补发电系统性能研究[J].工程热物理学报, 2020, 41(2): 261-265.
[21] 陈登勇, 刘方, 刘帅.基于阶梯碳交易的含P2G-CCS耦合和燃气掺氢的虚拟电厂优化调度[J].电网技术, 2022, 46(6): 2042-2053.DOI: 10.13335/j.1000-3673.pst.2021.2177.
[22] 闫文文, 文中, 李丹, 等.计及含光热模块AA-CAES电站和碳捕集的综合能源系统低碳优化调度[J/OL].电测与仪表: 1-10[2023-03-15].http://kns.cnki.net/kcms/detail/23.1202.th.20230215.1434.020.html.
[23] 陈锦鹏, 胡志坚, 陈颖光, 等.考虑阶梯式碳交易机制与电制氢的综合能源系统热电优化[J].电力自动化设备, 2021, 41(9): 48-55.DOI: 10.16081/j.epae.202109032.
[24] 徐敏, 宋汶秦, 王著秀.考虑碳税的新型电力系统分布鲁棒机会约束调度[J/OL].电测与仪表: 1-10[2023-03-10].http://kns.cnki.net/kcms/detail/23.1202.TH.20230113.1811.002.html.
[25] 张菁, 林毓军, 齐晓光, 等.考虑碳税与碳交易替代效应的电力系统低碳经济调度方法[J].电力建设, 2022, 43(6): 1-11.DOI: 10.12204/j.issn.1000-7229.2022.06.001.
[1] ZHAO Di, WEN Zhong, WU Qian, YAN Wenwen, QIN Zhiyin, WANG Boyu. Low-Carbon Optimal Scheduling of Integrated Energy System under Electro-Thermal Coupling of 5G Base Station and Concentrated Solar Power Plant [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 47-60.
[2] SU Shiwei, HAO Yitong, SONG Yujiao, ZHANG Lei, ZHI Li, HAO Yifan. Optimal Dispatch of Park Integrated Energy System Including Wind Power-Hydrogen Energy-P2G [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 48-57.
[3] PANG Li-jun, WANG Rong-kai, WANG Yi. Interaction Potential of He-AlH Complex System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 6-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Yun-yan, LI Rong-zheng, LI Bing, DING Chen-xu. Optimization of Extraction Process of Alkaloids from Meconopsis horridula Hook. f. & Thomson by Response Surface Methodology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 84 -90 .
[2] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[3] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[4] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[5] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[6] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[7] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[8] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[9] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[10] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .