Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 171-179.doi: 10.16088/j.issn.1001-6600.2022110804

Previous Articles     Next Articles

Effects of Land Use Types on Soil Organic Carbon Content in Eastern Hainan Island

WANG Junguang1,2, WANG Peng3, ZHAO Zhizhong1*, TANG Wei1, ZHAO Zeyang1, LI Yan1   

  1. 1. School of Geography and Environmental Science, Hainan Normal University, Haikou Hainan 571158, China;
    2. School of Geography and Tourism, Shanxi Normal University, Xi’an Shaanxi 710119, China;
    3. Geological Survey Institute of Hainan Province, Haikou Hainan 570206, China
  • Received:2022-11-08 Revised:2023-03-01 Published:2023-10-09

Abstract: By studying four typical land use types in the east of Hainan Island, the distribution characteristics of soil organic carbon content and the change of carbon density under different land use patterns were analyzed. In order to provide a scientific basis for reasonably optimizing the land use mode of Hainan Island and promoting the sustainable development of agricultural production. The study took the east of Hainan Island as the research area, selected four typical land use types (paddy field, abandoned land, orchard land and rubber forest land) as the research objects. Through field investigation and sampling and indoor test analysis, the distribution characteristics of soil organic carbon content and density under different land use types were studied. The change of land use types can lead to the change of soil bulk density. The results showed that: the average soil organic carbon content of 0-30 cm under four different land use types in the study area ranged from 3.73 to 14.01 g/kg. The average soil organic carbon content of paddy field was the highest, and that of rubber plantation was the lowest. The average soil organic carbon content from large to small was paddy field > abandoned land >orchard > rubber plantation. The average organic carbon density of 0-30 cm soil ranged from 1.74 to 5.86 kg·m-2; Under the same land use types, the change of soil organic carbon density in each soil layer was basically the same. The change trend of soil organic carbon density and soil organic carbon content of four different land use types were similar, and they all decreased with the increase of soil depth. The soil organic carbon density of the four land use types in 0-20 cm soil layer accounted for more than 65% of the study section (0-30 cm) (69.21%-72.99%). The change of land use types would lead to the change of soil bulk density .Among the four different land use types in the study area, the content and density of soil organic carbon in paddy field were the highest, and the content and density of rubber forest land were the lowest; There were differences in soil carbon input under different land use types, mainly because land use types could affect the exogenous input of soil carbon pool; Under the same natural conditions, there were significant differences in soil organic carbon content due to different land use types. Therefore, Hainan should strengthen the management of rubber forest land, especially the use of organic fertilizer.

Key words: land use types, soil organic carbon content, soil bulk density, soil organic carbon density, Hainan Island

CLC Number:  S158
[1] 张俊华, 李国栋, 王岩松, 等. 黄河泥沙冲/沉积区土壤有机碳不同组分空间特征及变异机制[J]. 地理学报, 2020, 75(3): 558-570.DOI: 10.11821/d1xb202003009.
[2] 刘京, 常庆瑞, 陈涛, 等. 陕西省土壤有机碳密度空间分布及储量估算[J]. 土壤通报, 2012, 43(3): 656-661. DOI: 10.19336/j.cnki.trtb.2012.03.025.
[3] 张雄伟, 李刚, 董宽虎, 等. 山西主要草地类型土壤有机碳储量及其垂直分配特征[J]. 中国草地学报, 2020, 42(1): 141-146. DOI: 10.16742/j.zgcdxb.20190106.
[4] SMITH P. Global climate change and pedogenic carbonates[J].Geoderma, 2001, 104(1/2): 180-182.DOI: 10.1016/S0016-7061(01)00059-3.
[5] 朱连奇, 朱小立, 李秀霞. 土壤有机碳研究进展[J]. 河南大学学报(自然科学版), 2006, 36(3): 72-75.DOI: 10.15991/j.cnki.411100.2006.03.019.
[6] 张旭博, 李雄, 徐梦, 等. 不同土地利用方式下我国北方土壤有机、无机碳库的变化趋势及原因分析[J]. 植物营养与肥料学报, 2020, 26(8): 1440-1450. DOI: 10.11674/zwyf.19421.
[7] 王芳丽, 高明, 代文才, 等. 不同土地利用方式下土壤有机碳分布特征[J]. 水土保持学报, 2016, 30(4): 227-232. DOI: 10.13870/j.cnki.stbcxb.2016.04.039.
[8] 徐梦, 李晓亮, 蔡晓布, 等. 藏东南地区不同土地利用方式下土壤有机碳组分及周转变化特征[J]. 中国农业科学, 2018, 51(19): 3714-3725. DOI: 10.3864/j.issn.0578-1752.2018.19009.
[9] 李燕, 赵志忠, 吴丹, 等. 海南岛东部地区不同土地利用方式土壤有机碳的分布特征[J]. 福建农业学报, 2018, 33(8): 820-827. DOI: 10.19303/j.issn.1008-0384.2018.08.009.
[10] 李姝娟, 李洪远, 郝翠, 等. 滨海新区土地利用变化对土壤碳密度空间分布及生态风险的影响[J]. 安全与环境学报, 2011, 11(5): 133-137. DOI: 10.3969/j.issn.1009-6094.2011.05.029.
[11] 曹新光, 岳伟鹏, 邓洁. 北亚热带山地不同海拔土壤有机碳分布特征: 以鄂东龟峰山为例[J].广西师范大学学报(自然科学版),2021,39(6):174-182.DOI: 10.16088/j.issn.1001-6600.2021010601.
[12] LETTENS S, VAN ORSHOVEN J, VAN WESEMAEL B, et al. Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990[J]. Global Change Biology, 2005, 11(12):2128-2140. DOI: 10.1111/j.1365-2486.2005.001074.x.
[13] LAL R. Soil carbon dynamics in cropland and rangeland[J].Environmental Pollution, 2002, 116(3): 353-362. DOI: 10.1016/S0269-7491(01)00211-1.
[14] JOBBÁGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2):423-436. DOI: 10.2307/2641104.
[15] 芦倩, 李毅, 刘贤德, 等. 祁连山排露沟流域土壤有机碳空间变异性研究[J]. 水土保持学报, 2020, 34(5): 238-243. DOI: 10.13870/j.cnki.stbcxb.2020.05.033.
[16] 黄先飞, 周运超, 张珍明. 喀斯特石漠化区不同土地利用方式下土壤有机碳分布特征[J]. 水土保持学报, 2017, 31(5): 215-221. DOI: 10.13870/j.cnki.stbcxb.2017.05.034.
[17] 唐薇, 赵志忠, 王军广, 等. 不同耕作制度下稻田土壤有机碳分布特征分析: 以海南省中部地区为例[J]. 海南师范大学学报(自然科学版), 2020, 33(3): 327-333.DOI: 10.12051/j.issn.1674-4942.2020.03.012.
[18] 薛杨, 宿少锋, 林之盼, 等. 海南岛东北部5种森林土壤有机碳分布特征[J]. 热带作物学报, 2019, 40(11): 2294-2299. DOI: 10.3969/j.issn.1000-2561.2019.11.027.
[19] 蔡文良, 谢艳云, 唐雯. 海南尖峰岭热带山地雨林土壤有机碳储量和垂直分布特征[J]. 生态环境学报, 2019, 28(8): 1514-1521. DOI: 10.16258/j.cnki.1674-5906.2019.08.003.
[20] 赵泽阳, 赵志忠, 付博, 等. 海南岛北部地区红树林湿地土壤有机碳分布规律及影响因素[J]. 广东农业科学, 2018, 45(12): 49-55. DOI: 10.16768/j.issn.1004-874X.2018.12.009.
[21] 吕丽平, 王登峰, 魏志远, 等. 近20年海南岛土壤有机碳时空变异[J]. 热带作物学报, 2016, 37(2): 338-344. DOI:10.3969/j.issn.100-2561.2016.02.020.
[22] 方圆. 海南省土壤有机碳时空变异[D]. 海口: 海南大学, 2012.
[23] 李景, 吴会军, 武雪萍, 等. 长期免耕和深松提高了土壤团聚体颗粒态有机碳及全氮含量[J]. 中国农业科学, 2021, 54(2): 334-344. DOI: 10.3864/j.issn.0578-1752.2021.02.009.
[24] 沈非, 任雅茹, 黄艳萍, 等. 芜湖城市绿地表层土壤有机碳密度分布特征[J]. 土壤通报, 2018, 49(5): 1123-1129. DOI: 10.19336/j.cnki.trtb.2018.05.18.
[25] 张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012: 15-38.
[26] 任姝婷, 宫渊波, 郑江坤, 等. 官司河流域土壤有机碳密度和储量研究[J]. 四川农业大学学报, 2014, 32(4): 362-368. DOI: 10.3969/j.issn.1000-2650.2014.04.002.
[27] 辛文杰, 苏印泉, 朱铭强, 等. 千阳县不同林分土壤有机碳的分布特征[J]. 中南林业科技大学学报, 2014, 34(5): 66-69, 78.DOI: 10.14067/j.cnki.1673-923x.2014.05.002.
[28] 薄会娟, 董晓华, 郭梁锋, 等. 湖北省土壤有机碳垂直分布及储量估算[J]. 环境科学与技术, 2018, 41(12): 290-296.DOI: 10.19672/j.cnki.1003-6504.2018.12.042.
[29] SUUSTER E, RITZ C, ROOSTALU H, et al. Soil bulk density pedotransfer functions of the humus horizon in arable soils[J].Geoderma, 2011, 163(1/2): 74-82.DOI: 10.1016/j.geoderma.2011.04.005.
[30] 马剑, 金铭, 敬文茂, 等. 祁连山中段典型植被土壤有机碳密度研究[J]. 中南林业科技大学学报, 2020, 40(8): 99-105.DOI: 10.14067/j.cnki.1673-923x.2020.08.012.
[31] 梁启鹏, 余新晓, 庞卓, 等. 不同林分土壤有机碳密度研究[J]. 生态环境学报, 2010, 19(4): 889-893. DOI: 10.16258/j.cnki.1674-5906.2010.04.041.
[32] 王晓丽, 王嫒, 石洪华, 等. 南长山岛不同土地利用方式下的土壤有机碳密度[J]. 环境科学学报, 2014, 34(4): 1009-1015.DOI: 10.13671/j.hjkxxb.2014.0163.
[33] 章晓芳, 郑生猛, 夏银行, 等. 红壤丘陵区土壤有机碳组分对土地利用方式的响应特征[J]. 环境科学, 2020, 41(3): 1466-1473.DOI: 10.13227/j.hjkx.201908218.
[34] 张祎, 李鹏, 肖列, 等. 黄土高原丘陵区地形和土地利用对土壤有机碳的影响[J]. 土壤学报, 2019, 56(5): 1140-1150.DOI: 10.11766/trxb201901220367.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[3] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[4] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[5] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[6] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[7] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[8] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[9] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .
[10] LIU Meiyu, ZHANG Jinyan, ZHOU Tongxi, LIAO Guangfeng, YANG Xinzhou, LU Rumei. A New C21 Steroidal Glycoside from Gymnema sylvestre and Its Hypoglycemic Activity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 96 -104 .