Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 161-170.doi: 10.16088/j.issn.1001-6600.2022102004

Previous Articles     Next Articles

Applying Metabonomics to Predict the Spoilage Bacteria in Beer Fermentation

GUO Yonghao, LIU Churui, SUN Zhen*   

  1. School of Biological Engineering, Dalian Polytechnic University, Dalian Liaoning 116033, China
  • Received:2022-10-20 Revised:2022-11-23 Published:2023-10-09

Abstract: Non-targeted mass spectrometry analysis based on ultra high performance liquid chromatography-quadrupole-time of flight-tandem mass spectrometry (UPLC-Q-TOF-MS) combined with machine learning can predict whether beer is infected by spoilage bacteria. The metabonomics was used to analyze beer spoilage bacteria such as Lactobacillus brevis, Bacillus, Lactobacillus parabuchneri, Lactobacillus plantarum and Staphylococcus saprophyticus during beer fermentation. The metabonomics data was then analyzed by the multivariate analysis method of random forest. The first 30% of the important characteristic substances of the model were selected for pathway enrichment analysis. Finally, it was found that in the initial stage of fermentation, the contents of choline, choline glycerophosphate, triethanolamine, phosphatidylethanolamine and 2-(3-carboxylpropionyl)-6-hydroxy-cyclohexa-2,4-dicarboxylic acid (SHCHC) in spoiled beer samples were higher than those in normal beer samples. The contents of choline in spoiled beer with 36-48 h fermentation were 50% - 130% higher than those in normal beer samples; The content of glycerophosphate choline in spoiled beer with 24 h fermentation was 10% - 30% lower than that in normal beer. As the fermentation goes on, the content of glycerophosphate choline in spoiled beer gradually increased to more than 9% higher than that in normal beer; The content of triethanolamine in normal beer with 24 h fermentation was the highest, which was 2-3 times higher than that in spoiled beer; Phosphatidylethanolamine in spoiled beer was 6% - 13% higher than that in normal beer with 96 h fermentation; SHCHC was also only detected in spoiled beer with 36 h fermentation. These substances could be used as biomarkers of beer spoilage.

Key words: machine learning, beer spoilage bacteria, metabonomics

CLC Number:  TS207.4
[1] 李宪臻,王伟,蒋宝航,等.啤酒花抗性机制的研究进展[J].微生物学杂志,2015,35(5):1-7.DOI: 10.3969/j.issn.1005-7021.2015.05.001.
[2] 余偲,张宝善,李娜,等.啤酒腐败菌的检测技术研究进展[J].食品工业科技,2020,41(2):324-329.DOI:10.13386/j.issn1002-0306.2020.02.052.
[3] 张雪.发酵过程中腐败菌对啤酒成分影响的研究[D].大连:大连工业大学,2021:1-4.DOI: 10.26992/d.cnki.gdlqc.2021.000440.
[4] MUNFORD A R G, CHAVES R D, SANT’ANA A S. Inactivation kinetics of beer spoilage bacteria (Lactobacillus brevis, Lactobacillus casei, and Pediococcus damnosus) during acid washing of brewing yeast[J]. Food Microbiology, 2020, 91: 103513. DOI: 10.1016/j.fm.2020.103513.
[5] 李慧帆,张雪,王越,等.超高效液相色谱-四极杆-飞行时间质谱联用技术分析啤酒生产中污染短乳杆菌49非挥发性化学成分的差异[J].食品科技,2022,47(3):330-337.DOI: 10.13684/j.cnki.spkj.2022.03.026.
[6] SUZUKI K, IIJIMA K, SAKAMOTO K, et al. A review of hop resistance in beer spoilage lactic acid bacteria[J]. Journal of the Institute of Brewing, 2006, 112(2): 173-191. DOI: 10.1002/j.2050-0416.2006.tb00247.x.
[7] 钟成,刘伶普,李清亮,等.采用代谢组学分析技术分析工业啤酒发酵过程中风味物质生成规律[J].中国生物工程杂志,2016,36(12):49-58.DOI: 10.13523/j.cb.20161208.
[8] HASELEU G, LAGEMANN A, STEPHAN A, et al. Quantitative sensomics profiling of hop-derived bitter compounds throughout a full-scale beer manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7930-7939. DOI: 10.1021/jf101326v.
[9] HUGHEY C A, MCMINN C M, PHUNG J. Beeromics: from quality control to identification of differentially expressed compounds in beer[J]. Metabolomics, 2016, 12(1): 11. DOI: 10.1007/s11306-015-0885-5.
[10] MAROVA I, PARILOVA K, FRIEDL Z, et al. Analysis of phenolic compounds in lager beers of different origin: a contribution to potential determination of the authenticity of Czech beer[J]. Chromatographia, 2011, 73(1): 83-95. DOI: 10.1007/s10337-011-1916-7.
[11] ANDRÉS-IGLESIAS C, BLANCO C A, BLANCO J, et al. Mass spectrometry-based metabolomics approach to determine differential metabolites between regular and non-alcohol beers[J]. Food Chemistry, 2014, 157: 205-212. DOI: 10.1016/j.foodchem.2014.01.123.
[12] 王树庆.啤酒酿造中的微生物污染[J].酿酒,2008,35(1):50-54.DOI: 10.3969/j.issn.1002-8110.2008.01.023.
[13] 朱林江,郑飞云,李崎,等.啤酒腐败菌的检测方法[J].食品科学,2007,28(1):360-366.DOI: 10.3321/j.issn:1002-6630.2007.01.092.
[14] 徐岩,张丽苹,顾国贤.啤酒酿造中腐败细菌的研究[J].酿酒,2000,141(6):68-72.
[15] 余偲,张宝善,李娜,等.啤酒腐败菌的检测技术研究进展[J].食品工业科技,2020,41(2):324-329.DOI:10.13386/j.issn1002-0306.2020.02.052.
[16] 张全斌,李艳琴.啤酒腐败菌分子检测技术的研究进展[J].食品与药品,2007,9(6A):55-57.DOI: 10.3969/j.issn.1672-979X.2007.06.019.
[17] 王越,张俊鹏,张雪,等.基于UPLC-Q-TOF-MS技术分析不同品牌啤酒中非挥发性化学成分的差异[J].食品研究与开发,2022,43(1):173-179.DOI: 10.12161/j.issn.1005-6521.2022.01.025.
[18] YANG Z L, SHI Y Q, LI P L, et al. Application of principal component analysis (PCA) to the evaluation and screening of multiactivity fungi[J]. Journal of Ocean University of China, 2022, 21(3): 763-772. DOI: 10.1007/s11802-022-5096-x.
[19] JIANG L, SULLIVAN H, WANG B. Principal component analysis (PCA) loading and statistical tests for nuclear magnetic resonance (NMR) metabolomics involving multiple study groups[J]. Analytical Letters, 2022, 55(10): 1648-1662. DOI: 10.1080/00032719.2021.2019758.
[20] HE J F, LI Y P, ZHANG X Y, et al. Missing and corrupted data recovery in wireless sensor networks based on weighted robust principal component analysis[J]. Sensors, 2022, 22(5): 1992. DOI: 10.3390/s22051992.
[21] BRUNI V, CARDINALI M L, VITULANO D. A short review on minimum description length: an application to dimension reduction in PCA[J]. Entropy, 2022, 24(2): 269. DOI: 10.3390/e24020269.
[22] 陈华磊,杨朝霞,王成红,等.基于气相色谱-质谱联用与偏最小二乘-判别分析的啤酒爽口性评价[J].食品科学,2019,40(6):228-232.DOI: 10.7506/spkx1002-6630-20180125-343.
[23] DENG L L, GUO F J, CHENG K K, et al. Identifying significant metabolic pathways using multi-block partial least-squares analysis[J]. Journal of Proteome Research, 2020, 19(5): 1965-1974. DOI: 10.1021/acs.jproteome.9b00793.
[24] 董红瑶,王弈丹,李丽红.随机森林优化算法综述[J].信息与电脑(理论版),2021,33(17):34-37.DOI: 10.3969/j.issn.1003-9767.2021.17.011.
[25] GÖK E C, OLGUN M O. SMOTE-NC and gradient boosting imputation based random forest classifier for predicting severity level of covid-19 patients with blood samples[J]. Neural Computing & Applications, 2021, 33(22): 15693-15707. DOI: 10.1007/s00521-021-06189-y.
[26] 韩红桂,赵子凡,伍小龙,等.基于改进随机森林的城市污水处理过程运行数据清洗方法[J].北京工业大学学报,2021,47(5):421-430.DOI: 10.11936/bjutxb2020110034.
[27] 谭起龙,邓魁,李康,等.随机森林回归分析方法在代谢组学批次效应移除中的应用[J].中国卫生统计,2020,37(5):667-671.DOI: 10.3969/j.issn.1002-3674.2020.05.007.
[28] 韩敏,朱新荣.不平衡数据分类的混合算法[J].控制理论与应用,2011,28(10):1485-1489.DOI: 10.7641/j.issn.1000-8152.2011.10.CCTA100742.
[29] RACENIS P V, LAI J L, DAS A K, et al. The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae[J]. Journal of Bacteriology, 1992, 174(17): 5702-5710. DOI: 10.1128/jb.174.17.5702-5710.1992.
[30] BÜRGERMEISTER M, BIRNER-GRÜNBERGER R, NEBAUER R, et al. Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta, 2004, 1686(1/2): 161-168. DOI: 10.1016/j.bbalip.2004.09.007.
[31] MARTÍNEZ-MORALES F, SCHOBERT M, LÓPEZ-LARA I M, et al. Pathways for phosphatidylcholine biosynthesis in bacteria[J]. Microbiology (Reading, England), 2003, 149(Pt12): 3461-3471. DOI: 10.1099/mic.0.26522-0.
[32] GARCÍA-ESTEPA R, ARGANDOÑA M, REINA-BUENO M, et al. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens[J]. Journal of Bacteriology, 2006, 188(11): 3774-3784. DOI: 10.1128/JB.00136-06.
[33] KAWAMUKAI M. Biosynthesis, bioproduction and novel roles of ubiquinone[J]. Journal of Bioscience and Bioengineering, 2002, 94(6): 511-517. DOI: 10.1016/s1389-1723(02)80188-8.
[34] 陈华磊,黄克兴,郑敏,等.基于非靶向风味组学分析3种品牌啤酒的风味差异[J].食品科学,2021,42(6):223-228.DOI: 10.7506/spkx1002-6630-20200319-294.
[35] 王伟,俞志敏,侯英敏,等.产香酵母Pichia myanmarensis LX15的分离纯化及对精酿啤酒风味物质形成的影响[J].微生物学杂志,2018,38(4):34-40.DOI: 10.3969/j.issn.1005-7021.2018.04.005.
[36] WANG Y T, YANG Z X, PIAO Z H, et al. Prediction of flavor and retention index for compounds in beer depending on molecular structure using a machine learning method[J]. RSC Advances, 2021, 11(58): 36942-36950. DOI: 10.1039/d1ra06551c.
[37] YU Z M, LUO Q Y, XIAO L, et al. Beer-spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality[J]. Food Science & Nutrition, 2019, 7(12): 3950-3957. DOI: 10.1002/fsn3.1256.
[38] WANG W, LIU Y W, SUN Z, et al. Hop resistance and beer-spoilage features of foodborne Bacillus cereus newly isolated from filtration-sterilized draft beer[J]. Annals of Microbiology, 2017, 67(1): 17-23. DOI: 10.1007/s13213-016-1232-4.
[39] GEISSLER A J, BEHR J, VON KAMP K, et al. Metabolic strategies of beer spoilage lactic acid bacteria in beer[J]. International Journal of Food Microbiology, 2016, 216: 60-68. DOI: 10.1016/j.ijfoodmicro.2015.08.016.
[1] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18.
[2] CHEN Gaojian, WANG Jing, LI Qianwen, YUAN Yunjing, CAO Jiachen. Data-driven Method for Automatic Machine Learning Pipeline Generation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 185-193.
[3] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57-67.
[4] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98.
[5] ZHANG Yongsheng, ZHU Wenjun, SHI Ruoqi, DU Zhenhua, ZHANG Rui, WANG Zhi. A Confidence-guided Hybrid Android Malware DetectionSystem with Multiple Heterogeneous Algorithms [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 19-28.
[6] LIN Yue,LIU Tingzhang,WANG Zhehe. Quantity Optimization of Virtual Sample Generation with Two Kinds of Upper Bound Conditions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 142-148.
[7] ZHANG Ren-jin, TANG Cui-fang, LIU Bin. Researching and Programming of Computer Games Using Artificial Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 119-124.
[8] XIA Ning, LIN Hong-fei, YANG Zhi-hao, LI Yan-peng. Gene Mention Normalization Based on Semantic Featured Machine Learning Disambiguation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 144-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[3] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[4] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[5] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[6] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[7] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[8] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[9] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .
[10] LIU Meiyu, ZHANG Jinyan, ZHOU Tongxi, LIAO Guangfeng, YANG Xinzhou, LU Rumei. A New C21 Steroidal Glycoside from Gymnema sylvestre and Its Hypoglycemic Activity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 96 -104 .