Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 161-170.doi: 10.16088/j.issn.1001-6600.2022102004
Previous Articles Next Articles
GUO Yonghao, LIU Churui, SUN Zhen*
[1] 李宪臻,王伟,蒋宝航,等.啤酒花抗性机制的研究进展[J].微生物学杂志,2015,35(5):1-7.DOI: 10.3969/j.issn.1005-7021.2015.05.001. [2] 余偲,张宝善,李娜,等.啤酒腐败菌的检测技术研究进展[J].食品工业科技,2020,41(2):324-329.DOI:10.13386/j.issn1002-0306.2020.02.052. [3] 张雪.发酵过程中腐败菌对啤酒成分影响的研究[D].大连:大连工业大学,2021:1-4.DOI: 10.26992/d.cnki.gdlqc.2021.000440. [4] MUNFORD A R G, CHAVES R D, SANT’ANA A S. Inactivation kinetics of beer spoilage bacteria (Lactobacillus brevis, Lactobacillus casei, and Pediococcus damnosus) during acid washing of brewing yeast[J]. Food Microbiology, 2020, 91: 103513. DOI: 10.1016/j.fm.2020.103513. [5] 李慧帆,张雪,王越,等.超高效液相色谱-四极杆-飞行时间质谱联用技术分析啤酒生产中污染短乳杆菌49非挥发性化学成分的差异[J].食品科技,2022,47(3):330-337.DOI: 10.13684/j.cnki.spkj.2022.03.026. [6] SUZUKI K, IIJIMA K, SAKAMOTO K, et al. A review of hop resistance in beer spoilage lactic acid bacteria[J]. Journal of the Institute of Brewing, 2006, 112(2): 173-191. DOI: 10.1002/j.2050-0416.2006.tb00247.x. [7] 钟成,刘伶普,李清亮,等.采用代谢组学分析技术分析工业啤酒发酵过程中风味物质生成规律[J].中国生物工程杂志,2016,36(12):49-58.DOI: 10.13523/j.cb.20161208. [8] HASELEU G, LAGEMANN A, STEPHAN A, et al. Quantitative sensomics profiling of hop-derived bitter compounds throughout a full-scale beer manufacturing process[J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 7930-7939. DOI: 10.1021/jf101326v. [9] HUGHEY C A, MCMINN C M, PHUNG J. Beeromics: from quality control to identification of differentially expressed compounds in beer[J]. Metabolomics, 2016, 12(1): 11. DOI: 10.1007/s11306-015-0885-5. [10] MAROVA I, PARILOVA K, FRIEDL Z, et al. Analysis of phenolic compounds in lager beers of different origin: a contribution to potential determination of the authenticity of Czech beer[J]. Chromatographia, 2011, 73(1): 83-95. DOI: 10.1007/s10337-011-1916-7. [11] ANDRÉS-IGLESIAS C, BLANCO C A, BLANCO J, et al. Mass spectrometry-based metabolomics approach to determine differential metabolites between regular and non-alcohol beers[J]. Food Chemistry, 2014, 157: 205-212. DOI: 10.1016/j.foodchem.2014.01.123. [12] 王树庆.啤酒酿造中的微生物污染[J].酿酒,2008,35(1):50-54.DOI: 10.3969/j.issn.1002-8110.2008.01.023. [13] 朱林江,郑飞云,李崎,等.啤酒腐败菌的检测方法[J].食品科学,2007,28(1):360-366.DOI: 10.3321/j.issn:1002-6630.2007.01.092. [14] 徐岩,张丽苹,顾国贤.啤酒酿造中腐败细菌的研究[J].酿酒,2000,141(6):68-72. [15] 余偲,张宝善,李娜,等.啤酒腐败菌的检测技术研究进展[J].食品工业科技,2020,41(2):324-329.DOI:10.13386/j.issn1002-0306.2020.02.052. [16] 张全斌,李艳琴.啤酒腐败菌分子检测技术的研究进展[J].食品与药品,2007,9(6A):55-57.DOI: 10.3969/j.issn.1672-979X.2007.06.019. [17] 王越,张俊鹏,张雪,等.基于UPLC-Q-TOF-MS技术分析不同品牌啤酒中非挥发性化学成分的差异[J].食品研究与开发,2022,43(1):173-179.DOI: 10.12161/j.issn.1005-6521.2022.01.025. [18] YANG Z L, SHI Y Q, LI P L, et al. Application of principal component analysis (PCA) to the evaluation and screening of multiactivity fungi[J]. Journal of Ocean University of China, 2022, 21(3): 763-772. DOI: 10.1007/s11802-022-5096-x. [19] JIANG L, SULLIVAN H, WANG B. Principal component analysis (PCA) loading and statistical tests for nuclear magnetic resonance (NMR) metabolomics involving multiple study groups[J]. Analytical Letters, 2022, 55(10): 1648-1662. DOI: 10.1080/00032719.2021.2019758. [20] HE J F, LI Y P, ZHANG X Y, et al. Missing and corrupted data recovery in wireless sensor networks based on weighted robust principal component analysis[J]. Sensors, 2022, 22(5): 1992. DOI: 10.3390/s22051992. [21] BRUNI V, CARDINALI M L, VITULANO D. A short review on minimum description length: an application to dimension reduction in PCA[J]. Entropy, 2022, 24(2): 269. DOI: 10.3390/e24020269. [22] 陈华磊,杨朝霞,王成红,等.基于气相色谱-质谱联用与偏最小二乘-判别分析的啤酒爽口性评价[J].食品科学,2019,40(6):228-232.DOI: 10.7506/spkx1002-6630-20180125-343. [23] DENG L L, GUO F J, CHENG K K, et al. Identifying significant metabolic pathways using multi-block partial least-squares analysis[J]. Journal of Proteome Research, 2020, 19(5): 1965-1974. DOI: 10.1021/acs.jproteome.9b00793. [24] 董红瑶,王弈丹,李丽红.随机森林优化算法综述[J].信息与电脑(理论版),2021,33(17):34-37.DOI: 10.3969/j.issn.1003-9767.2021.17.011. [25] GÖK E C, OLGUN M O. SMOTE-NC and gradient boosting imputation based random forest classifier for predicting severity level of covid-19 patients with blood samples[J]. Neural Computing & Applications, 2021, 33(22): 15693-15707. DOI: 10.1007/s00521-021-06189-y. [26] 韩红桂,赵子凡,伍小龙,等.基于改进随机森林的城市污水处理过程运行数据清洗方法[J].北京工业大学学报,2021,47(5):421-430.DOI: 10.11936/bjutxb2020110034. [27] 谭起龙,邓魁,李康,等.随机森林回归分析方法在代谢组学批次效应移除中的应用[J].中国卫生统计,2020,37(5):667-671.DOI: 10.3969/j.issn.1002-3674.2020.05.007. [28] 韩敏,朱新荣.不平衡数据分类的混合算法[J].控制理论与应用,2011,28(10):1485-1489.DOI: 10.7641/j.issn.1000-8152.2011.10.CCTA100742. [29] RACENIS P V, LAI J L, DAS A K, et al. The acyl dihydroxyacetone phosphate pathway enzymes for glycerolipid biosynthesis are present in the yeast Saccharomyces cerevisiae[J]. Journal of Bacteriology, 1992, 174(17): 5702-5710. DOI: 10.1128/jb.174.17.5702-5710.1992. [30] BÜRGERMEISTER M, BIRNER-GRÜNBERGER R, NEBAUER R, et al. Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta, 2004, 1686(1/2): 161-168. DOI: 10.1016/j.bbalip.2004.09.007. [31] MARTÍNEZ-MORALES F, SCHOBERT M, LÓPEZ-LARA I M, et al. Pathways for phosphatidylcholine biosynthesis in bacteria[J]. Microbiology (Reading, England), 2003, 149(Pt12): 3461-3471. DOI: 10.1099/mic.0.26522-0. [32] GARCÍA-ESTEPA R, ARGANDOÑA M, REINA-BUENO M, et al. The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens[J]. Journal of Bacteriology, 2006, 188(11): 3774-3784. DOI: 10.1128/JB.00136-06. [33] KAWAMUKAI M. Biosynthesis, bioproduction and novel roles of ubiquinone[J]. Journal of Bioscience and Bioengineering, 2002, 94(6): 511-517. DOI: 10.1016/s1389-1723(02)80188-8. [34] 陈华磊,黄克兴,郑敏,等.基于非靶向风味组学分析3种品牌啤酒的风味差异[J].食品科学,2021,42(6):223-228.DOI: 10.7506/spkx1002-6630-20200319-294. [35] 王伟,俞志敏,侯英敏,等.产香酵母Pichia myanmarensis LX15的分离纯化及对精酿啤酒风味物质形成的影响[J].微生物学杂志,2018,38(4):34-40.DOI: 10.3969/j.issn.1005-7021.2018.04.005. [36] WANG Y T, YANG Z X, PIAO Z H, et al. Prediction of flavor and retention index for compounds in beer depending on molecular structure using a machine learning method[J]. RSC Advances, 2021, 11(58): 36942-36950. DOI: 10.1039/d1ra06551c. [37] YU Z M, LUO Q Y, XIAO L, et al. Beer-spoilage characteristics of Staphylococcus xylosus newly isolated from craft beer and its potential to influence beer quality[J]. Food Science & Nutrition, 2019, 7(12): 3950-3957. DOI: 10.1002/fsn3.1256. [38] WANG W, LIU Y W, SUN Z, et al. Hop resistance and beer-spoilage features of foodborne Bacillus cereus newly isolated from filtration-sterilized draft beer[J]. Annals of Microbiology, 2017, 67(1): 17-23. DOI: 10.1007/s13213-016-1232-4. [39] GEISSLER A J, BEHR J, VON KAMP K, et al. Metabolic strategies of beer spoilage lactic acid bacteria in beer[J]. International Journal of Food Microbiology, 2016, 216: 60-68. DOI: 10.1016/j.ijfoodmicro.2015.08.016. |
[1] | YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1-18. |
[2] | CHEN Gaojian, WANG Jing, LI Qianwen, YUAN Yunjing, CAO Jiachen. Data-driven Method for Automatic Machine Learning Pipeline Generation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 185-193. |
[3] | YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57-67. |
[4] | LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98. |
[5] | ZHANG Yongsheng, ZHU Wenjun, SHI Ruoqi, DU Zhenhua, ZHANG Rui, WANG Zhi. A Confidence-guided Hybrid Android Malware DetectionSystem with Multiple Heterogeneous Algorithms [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 19-28. |
[6] | LIN Yue,LIU Tingzhang,WANG Zhehe. Quantity Optimization of Virtual Sample Generation with Two Kinds of Upper Bound Conditions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 142-148. |
[7] | ZHANG Ren-jin, TANG Cui-fang, LIU Bin. Researching and Programming of Computer Games Using Artificial Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 119-124. |
[8] | XIA Ning, LIN Hong-fei, YANG Zhi-hao, LI Yan-peng. Gene Mention Normalization Based on Semantic Featured Machine Learning Disambiguation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 144-147. |
|