Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 152-160.doi: 10.16088/j.issn.1001-6600.2022091804

Previous Articles     Next Articles

Verification of SSR Markers Significantly Associated with Height Growth Traits in Pinus massoniana

LING Jinyan1, FENG Yuanheng2,3, YANG Zhangqi2,3*, CHEN Hu2,3, TAN Jianhui2,3, GONG Guifang2,3, LUO Qunfeng2,3, FU Jun4, ZHAI Zhanggui4   

  1. 1. College of Life Science, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Guangxi Academy of Forestry, Nanning Guangxi 530002, China;
    3. Guangxi Masson Pine Engineering Technology Research Center / Key Laboratory of Mid-South Fast-growing Timber Breeding of State Forestry and Grassland Administration / Guangxi Key Laboratory of Cultivation of Excellent Timber Resources / Masson Pine Engineering Technology Research Center of State Forestry and Grassland Administration (Guangxi Academy of Forestry), Nanning Guangxi 530002, China;
    4. Guangxi Paiyangshan Forest Farm, Ningming Guangxi 532500, China
  • Received:2022-09-18 Revised:2022-10-18 Published:2023-10-09

Abstract: Molecular marker-assisted selection breeding is an important method to obtain genes controlling target traits. In this study, four SSR markers (PCZ002, PCZ023, PCZ142 and PCZ187) associated with the growth traits of P. massoniana were selected from the second-generation full-sib families of P. massoniana. Four hybrid families were selected for each marker, with 150, 172, 157 and 163 individual materials, respectively. The association analysis of the second-generation full-sib population of P. massoniana was carried out by combining the data of tree height growth traits. The results showed that the genotypes of PCZ142-AA and PCZ142-AB were positively correlated with tree height, and the tree height was significantly higher than that of PCZ142-BB genotype, while PCZ142-BB genotype was significantly negatively correlated with tree height (P< 0.05). There was a significant positive correlation between PCZ187-BB genotype and tree height (P< 0.01), and the tree height was significantly higher than that of PCZ187-AA and PCZ187-AB genotype materials. The genotypes marked PCZ002 and PCZ023 had no significant correlation with tree height. In summary, the markers PCZ142-BB and PCZ187-BB were significantly correlated with the height growth traits of P. massoniana. The PCZ142-BB was significantly negatively correlated, and the PCZ187-BB was significantly positively correlated. These two genotype materials could become important genetic resources for the height growth traits of P. massoniana. The results of this study provide important information for the locus of height growth traits of P. massoniana in the positioning control population, and provide reference for molecular marker-assisted selection breeding of P. massoniana.

Key words: Pinus massoniana, SSR marking, tree height, association analysis, assisted breeding

CLC Number:  S791.248; Q7
[1] 关淑艳, 费建博, 刘智博, 等. 分子标记辅助选择(MAS)在玉米抗逆育种中的应用[J]. 吉林农业大学学报, 2018, 40(4): 399-407. DOI: 10.13327/j.jjlau.2018.4306.
[2] ZHANG C H, LI J Z, ZHU Z, et al. Cluster analysis on Japonica rice (Oryza sativa L.) with good eating quality based on SSR markers and phenotypic traits[J]. Rice Science, 2010, 17(2): 111-121. DOI: 10.1016/S1672-6308(08)60113-4.
[3] KWON S J, CHO Y C, KWON S W, et al. QTL mapping of agronomic traits using an RIL population derived from a cross between temperate japonica cultivars in rice (Oryza sativa L.)[J]. Breeding Science, 2008, 58(3): 271-279. DOI: 10.1270/jsbbs.58.271.
[4] 侯军亮, 鄢阳天, 李泽桦, 等. 利用MAS技术改良香稻‘R15’的直链淀粉含量[J]. 分子植物育种, 2020, 18(1):168-175. DOI: 10.13271/j.mpb.018.000168.
[5] 侯起岭, 赵昌平, 杨卫兵, 等. 小麦光温敏雄性不育系穗发芽抗性鉴定及相关分子标记验证[J]. 麦类作物学报, 2020, 40(9): 1023-1032. DOI: 10.7606/j.issn.1009-1041.2020.09.01.
[6] 陈芳, 李欣, 乔麟轶, 等. 抗白粉病基因PmCH1357相关分子标记验证与评价[J]. 麦类作物学报, 2020, 40(1): 41-48. DOI: 10.7606/ji.ssnl.009-10412.0200.10.5.
[7] CHOI J K, SA K J, PARK D H, et al. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers[J]. Genes & Genomics, 2019, 41(6): 667-678. DOI: 10.1007/s13258-019-00813-x.
[8] LI J, TANG Y Y, JACOBSON A L, et al. Population structure and association mapping to detect QTL controlling tomato spotted wilt virus resistance in cultivated peanuts[J]. The Crop Journal, 2018, 6(5): 516-526. DOI: 10.1016/j.cj.2018.04.001.
[9] 侯名语, 李丽, 崔顺立, 等.分子标记辅助选择高油酸花生品种冀农花10号的选育[J]. 中国种业, 2022(7): 93-95. DOI: 10.19462/j.cnki.1671-895x.2022.07.018.
[10] 甘四明, 施季森, 白嘉雨, 等. 林木分子标记研究进展[J]. 林业科学研究, 1998, 11(4): 428-434.
[11] 解懿妮, 刘青华, 蔡燕灵, 等. 5年生马尾松生长性状3地点家系变异及评价[J]. 林业科学研究, 2020, 33(5): 1-12. DOI: 10.13275/j.cnki.lykxyj.2020.05.001.
[12] 杨章旗, 冯源恒, 谭健晖, 等.广西马尾松高世代育种策略研究[J]. 广西林业科学, 2018, 47(3): 251-256. DOI: 10.19692/j.cnki.gfs.2018.03.001.
[13] 谭健晖, 黄永利, 冯源恒, 等. 15年和22年马尾松纸浆材优良家系选择[J]. 中南林业科技大学学报, 2017, 37(2): 9-13. DOI: 10.14067/j.cnki.1673-923x.2017.02.002.
[14] 林思京. 25年生马尾松生长和木材基本密度家系变异与选择[J]. 林业科学研究, 2010, 23(6): 804-808. DOI: 10.13275/j.cnki.lykxyj.2010.06.005.
[15] 袁承志, 张振, 郑一, 等. 33年生马尾松木材力学性质种源变异研究[J]. 中南林业科技大学学报, 2021, 41(8): 68-74,107. DOI: 10.14067/j.cnki.1673-923x.2021.08.008.
[16] 胡兴峰, 吴帆, 孙晓波, 等. 38年生马尾松种源生长及材性联合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 203-212. DOI: 10.12302/j.issn.1000-2006.202104044.
[17] CHEN W X, CAO M, WANG Y X, et al. A genetic linkage map of Pinus massoniana based on SRAP, SSR and ESTP markers[J]. Silvae Genetica, 2014, 63(1/2/3/4/5/6): 1-8. DOI: 10.1515/sg-2014-0001.
[18] 崔博文. 马尾松种质评价及生长性状相关QTL的初步定位[D]. 贵阳: 贵州大学, 2017.
[19] 龚桂芳. 马尾松产脂性状EST-SSR引物开发及关联分析[D]. 桂林: 广西师范大学, 2020.
[20] 龚桂芳, 冯源恒, 罗群凤, 等. 马尾松树高生长性状显著关联基因挖掘[J]. 广西林业科学, 2022, 51(2): 180-183. DOI: 10.19692/j.issn.1006-1126.20220202.
[21] 马丽, 李治, 任天恒, 等. 普通小麦穗发芽抗性相关分子标记在RIL群体中的验证与评价[J]. 麦类作物学报, 2014, 34(4): 435-442.
[22] HUANG N, ANGELES E R, DOMINGO J. Pyramiding of bacterial blight resistance genes in rice, marker-assisted selection using RFLP and PCR[J]. Theoretical and Applied Genetics, 1997, 95(3): 313-320. DOI: 10.1007/s001220050565.
[23] BOUCHE A, HOSPITAL F, CAUSSE M, et al. Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines[J]. Genetics, 2002, 162(4): 1945-1959. DOI: 10.1095/genetics/162.4.1945.
[24] ZHANG D, ZHANG Z, YANG K, et al. Genetic mapping in (Populus tomentosa × Populus bolleana) and P. tomentosa Carr. using AFLP markers[J]. Theoretical and Applied Genetics, 2004, 108(4): 657-662. DOI: 10.1007/s00122-003-1478-7.
[25] 王晓丽, 马祥庆. 遗传标记技术及其在林木遗传育种中的应用研究[J]. 世界林业研究, 2005, 18(5): 39-43. DOI: 10.3969/j.issn.1001-4241.2005.05.008.
[26] 黄秦军, 苏晓华, 张香华. SSR分子标记与林木遗传育种[J]. 世界林业研究, 2002, 15(3): 14-21. DOI: 10.3969/j.issn.1001-4241.2002.03.003.
[27] CHANG I F, SZICK-MIRANDA K, PAN S Q, et al. Proteomic characterization of evolutionarily conserved and variable proteins of Arabidopsis cytosolic ribosomes[J]. Plant Physiology, 2005, 137(3): 848-862. DOI: 10.1104/pp.104.053637.
[28] WILLIAMS A J, WERNER-FRACZEK J, CHANG I F, et al. Regulated phosphorylation of 40S ribosomal protein S6 in root tips of maize[J]. Plant Physiology, 2003, 132(4): 2086-2097. DOI: 10.1104/pp.103.022749.
[1] LI Peng, WEI Wenchu, QIU Hui, YANG Zhangqi, CHEN Hu, QIU Chengxiang, LI Yuanming, LONG Zhenyun, WU Dongshan. Genetic Determination and Selection of Progeny Tungmian Provenance of Pinus massoniana [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 182-190.
[2] LI Yufeng, QIN Jiashuang, MA Jiangming, YANG Zhangqi, LI Mingjin, LU Shaohao, SONG Zunrong. Establishment of Above-ground Biomass Model and Distribution Characteristics of Pinus massoniana Plantations in Southern Subtropical [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 170-180.
[3] ZHANG Hui, LIU Hongying , ZHANG Yuning, MA Jiangming, MO Yanhua, LING Tianwang, YANG Zhangqi, LI Mingjin. Life Form Spectrum and Leaf Physiognomy of Understory Woody Species in the Near-natural Restoration Process of Pinus massoniana Plantations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 119-127.
[4] WANG Yongqi, QIN Jiashuang, MA Jiangming, JIAN Rui, PAN Xiaomei, YANG Zhangqi, LING Tianwang, LI Mingjin. Understory Woody Species Diversity of Pinus massoniana Plantations in South Subtropical Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 131-139.
[5] SONG Zunrong, QIN Jiashuang, LI Mingjin, MA Jiangming, ZHONG Fengyue, YANG Zhangqi, YAN Peidong. Study on Root Biomass of Pinus massoniana Plantations in Subtropical China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 149-156.
[6] PAN Xiaomei, LI Mingjin, YANG Zhangqi, MA Jiangming, LING Tianwang, YAN Peidong. Study on Undergrowth Flora of Pinus massoniana Plantations with Four Different Forest Ages in Southern Subtropical Area of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 136-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[3] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[4] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[5] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[6] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[7] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[8] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[9] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .
[10] LIU Meiyu, ZHANG Jinyan, ZHOU Tongxi, LIAO Guangfeng, YANG Xinzhou, LU Rumei. A New C21 Steroidal Glycoside from Gymnema sylvestre and Its Hypoglycemic Activity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 96 -104 .