Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 14-25.doi: 10.16088/j.issn.1001-6600.2023022302
Previous Articles Next Articles
GUO Jialiang, JIN Ting*
[1] VINODHINI G, CHANDRASEKARAN R M. Sentiment analysis and opinion mining: a survey[J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2012, 2(6): 282-292. [2] 钟佳娃, 刘巍, 王思丽, 等. 文本情感分析方法及应用综述[J]. 数据分析与知识发现, 2021, 5(6): 1-13. DOI: 10.11925/infotech.2096-3467.2021.0040. [3] 任泽裕, 王振超, 柯尊旺, 等. 多模态数据融合综述[J]. 计算机工程与应用, 2021, 57(18): 49-64. DOI: 10.3778/j.issn.1002-8331.2104-0237. [4] 刘继明, 张培翔, 刘颖, 等. 多模态的情感分析技术综述[J]. 计算机科学与探索, 2021, 15(7): 1165-1182. DOI: 10.3778/j.issn.1673-9418.2012075. [5] 张亚洲, 戎璐, 宋大为, 等. 多模态情感分析研究综述[J]. 模式识别与人工智能, 2020, 33(5): 426-438. DOI: 10.16451/j.cnki.issn1003-6059.202005005. [6] 吴石松, 董召杰. 基于RoBERTa改进的多模态情绪识别关键技术研究[J]. 电子设计工程, 2023, 31(9): 54-58. DOI: 10.14022/j.issn1674-6236.2023.09.011. [7] SUN Z K, SARMA P, SETHARES W, et al. Learning relationships between text, audio, and video via deep canonical correlation for multimodal language analysis[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 8992-8999. DOI: 10.1609/aaai.v34i05.6431. [8] HAZARIKA D, PORIA S, MIHALCEA R, et al. Icon: interactive conversational memory network for multimodal emotion detection[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2018: 2594-2604. DOI: 10.18653/v1/D18-1280. [9] PHAM H, LIANG P P, MANZINI T, et al. Found in translation: learning robust joint representations by cyclic translations between modalities[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 6892-6899. DOI: 10.1609/aaai.v33i01.33016892. [10] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]// Advances in Neural Information Processing Systems 27 (NIPS 2014). Red Hook, NY: Curran Associates, Inc., 2014: 3104-3112. [11] CAO R Q, YE C Y, ZHOU H. Multimodel sentiment analysis with self-attention[C]// Proceedings of the Future Technologies Conference (FTC) 2020: Volume 1. Cham: Springer Nature Switzerland AG, 2020: 16-26. DOI: 10.1007/978-3-030-63128-4_2. [12] PORIA S, CAMBRIA E, BAJPAI R, et al. A review of affective computing: from unimodal analysis to multimodal fusion[J]. Information Fusion, 2017, 37: 98-125. DOI: 10.1016/j.inffus.2017.02.003. [13] CAMBRIA E, DAS D, BANDYOPADHYAY S, et al. Affective computing and sentiment analysis[M]// CAMBRIA E, DAS D, BANDYOPADHYAY S, et al. A Practical Guide to Sentiment Analysis. Cham: Springer, 2017: 1-10. DOI: 10.1007/978-3-319-55394-8_1. [14] KAMPMAN O, BAREZI E J, BERTERO D,et al. Investigating audio, visual, and text fusion methods for end-to-end automatic personality prediction[EB/OL]. (2018-05-16)[2023-02-23]. https://arxiv.org/abs/1805.00705. DOI: 10.48550/arXiv.1805.00705. [15] D’MELLO S K, KORY J. A review and meta-analysis of multimodal affect detection systems[J]. ACM Computing Surveys, 2015, 47(3): 43. DOI: 10.1145/2682899. [16] MORENCY L P, MIHALCEA R, DOSHI P. Towards multimodal sentiment analysis: harvesting opinions from the web[C]// ICMI’11: Proceedings of the 13th International Conference on Multimodal Interfaces. New York, NY: Association for Computing Machinery, 2011: 169-176. DOI: 10.1145/2070481.2070509. [17] GKOUMAS D, LI Q C, LIOMA C, et al. What makes the difference? An empirical comparison of fusion strategies for multimodal language analysis[J]. Information Fusion, 2021, 66: 184-197. DOI: 10.1016/j.inffus.2020.09.005. [18] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2017: 1103-1114. DOI: 10.18653/v1/D17-1115. [19] WANG Y S, SHEN Y, LIU Z, et al. Words can shift: dynamically adjusting word representations using nonverbal behaviors[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 7216-7223. DOI: 10.1609/aaai.v33i01.33017216. [20] PORIA S, CAMBRIA E, HAZARIKA D, et al. Context-dependent sentiment analysis in user-generated videos[C]// Proceedings of the 55th annual meeting of the association for computational linguistics (volume 1: Long papers). Stroudsburg, PA: Association for Computational Linguistics, 2017: 873-883. DOI: 10.18653/v1/P17-1081. [21] HAN W, CHEN H, GELBUKH A, et al. Bi-bimodal modality fusion for correlation-controlled multimodal sentiment analysis[C]// ICMI’21: Proceedings of the 2021 International Conference on Multimodal Interaction. New York, NY: Association for Computing Machinery, 2021: 6-15. DOI: 10.1145/3462244.3479919. [22] HAN W, CHEN H, PORIA S. Improving multimodal fusion with hierarchical mutual information maximization for multimodal sentiment analysis[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2021: 9180-9192. DOI: 10.18653/v1/2021.emnlp-main.723. [23] 杨青, 张亚文, 朱丽, 等. 基于注意力机制和BiGRU融合的文本情感分析[J]. 计算机科学, 2021, 48(11): 307-311. DOI: 10.11896/jsjkx.201000075. [24] FENG K X, CHASPARI T. A review of generalizable transfer learning in automatic emotion recognition[J]. Frontiers in Computer Science, 2020, 2: 9. DOI: 10.3389/fcomp.2020.00009. [25] 岳增营, 叶霞, 刘睿珩. 基于语言模型的预训练技术研究综述[J]. 中文信息学报, 2021, 35(9): 15-29. DOI: 10.3969/j.issn.1003-0077.2021.09.002. [26] 李舟军, 范宇, 吴贤杰. 面向自然语言处理的预训练技术研究综述[J]. 计算机科学, 2020, 47(3): 162-173. DOI: 10.11896/jsjkx.191000167. [27] 赵宏, 傅兆阳, 赵凡. 基于BERT和层次化Attention的微博情感分析研究[J]. 计算机工程与应用, 2022, 58(5): 156-162. DOI: 10.3778/j.issn.1002-8331.2107-0448. [28] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. DOI: 10.18653/v1/N19-1423. [29] LEE S, HAN D K, KO H. Multimodal emotion recognition fusion analysis adapting BERT with heterogeneous feature unification[J]. IEEE Access, 2021, 9: 94557-94572. DOI: 10.1109/ACCESS.2021.3092735. [30] ABDU S A, YOUSEF A H, SALEM A. Multimodal video sentiment analysis using deep learning approaches, a survey[J]. Information Fusion, 2021, 76: 204-226. DOI: 10.1016/j.inffus.2021.06.003. [31] 朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11. DOI: 10.3969/j.issn.1003-0077.2019.06.001. [32] 林敏鸿, 蒙祖强. 基于注意力神经网络的多模态情感分析[J]. 计算机科学, 2020, 47(11A): 508-514, 548. DOI: 10.11896/jsjkx.191100041. [33] 姚懿秦, 郭薇. 基于交互注意力机制的多模态情感识别算法[J]. 计算机应用研究, 2021, 38(6): 1689-1693. DOI: 10.19734/j.issn.1001-3695.2020.09.0230. [34] 郭可心, 张宇翔. 基于多层次空间注意力的图文评论情感分析方法[J]. 计算机应用, 2021, 41(10): 2835-2841. DOI: 10.11772/j.issn.1001-9081.2020101676. [35] 朱亚辉. 基于Bi-LSTM-Attention的英文文本情感分类方法[J]. 电子设计工程, 2022, 30(16): 27-30. DOI: 10.14022/j.issn1674-6236.2022.16.006. [36] WU Y H, SCHUSTER M, CHEN Z F, et al. Google’s neural machine translation system: bridging the gap between human and machine translation[EB/OL]. (2016-10-08)[2023-02-23]. https://arxiv.org/abs/1609.08144. DOI: 10.48550/arXiv.1609.08144. [37] DEGOTTEX G, KANE J, DRUGMAN T, et al. COVAREP: a collaborative voice analysis repository for speech technologies[C]// 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, NJ: IEEE, 2014: 960-964. DOI: 10.1109/ICASSP.2014.6853739. [38] ZADEH A, ZELLERS R, PINCUS E, et al. MOSI: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos[EB/OL]. (2016-08-12)[2023-02-23]. https://arxiv.org/abs/1606.06259. DOI: 10.48550/arXiv.1606.06259. [39] ZADEH A, LIANG P P, VANBRIESEN J, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg, PA: Association for Computational Linguistics, 2018: 2236-2246. DOI: 10.18653/v1/P18-1208. [40] ZADEH A, LIANG P P, MAZUMDER N, et al. Memory fusion network for multi-view sequential learning[J]. Proceedings of the AAAI conference on artificial intelligence, 2018, 32(1): 5634-5641. DOI: 10.1609/aaai.v32i1.12021. [41] TSAI Y H H, BAI S J, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: Association for Computational Linguistics, 2019: 6558-6569. DOI: 10.18653/v1/P19-1656. [42] MAI S J, HU H F, XU J, et al. Multi-fusion residual memory network for multimodal human sentiment comprehension[J]. IEEE Transactions on Affective Computing, 2022, 13(1): 320-334. DOI: 10.1109/TAFFC.2020.3000510. |
[1] | CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31-39. |
[2] | SUN Yansong, YANG Liang, LIN Hongfei. Humor Recognition of Sitcom Based on Multi-granularity of Segmentation Enhancement and Semantic Enhancement [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 57-65. |
|