Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (2): 154-160.doi: 10.16088/j.issn.1001-6600.2022031005

Previous Articles     Next Articles

Relationship Between Starting Time of Daily Activity of Shinisaurus crocodilurus and Daylight Time and Sunrise Time

QIN Xudong1,2, SUN Tao1,3#, HE Jiasong1,2, LI Songning1,3, ZHANG Xiaoli1,3, WU Zhengjun1,3, CHEN Zening1,3*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Guangxi Daguishan Crocodile National Nature Reserve, Hezhou Guangxi 542824, China;
    3. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China
  • Received:2022-03-10 Revised:2022-05-09 Online:2023-03-25 Published:2023-04-25

Abstract: Affected by changes in light or endogenous hormones, some physiological phenomena and behaviors of organisms show diurnal fluctuations. In order to understand how the photoperiod of the environment affects the onset time of daily activities of the crocodile lizard, the study investigated the relationship between the awakening time of the crocodile lizard and the first activity time after waking up, and the time of dawn and sunrise in Guangxi Daguishan Crocodile Lizard National Nature Reserve. The results showed that: (1) The crocodile lizard waked up before sunrise, and there was a linear relationship between the awakening time and the dawn time (y=1.098 6x-0.070 0, R2=0.029 5; P=0.168), and the sunrise time (y=1.202 6x-0.491 1, R2=0.029 4; P=0.169), but the correlations were not significant. (2) The time between awakening of the crocodile lizard was significantly positively correlated with the first activity time (y=0.992 1x+0.115 1, R2=0.958 5; P<0.001). (3) Precipitation (with or without rain) had no effect on the awakening time and the first activity time of the crocodile lizard (awakening time: F=2.033, P=0.159; activity time: F=3.353, P=0.072).

Key words: diurnal rhythm, time allocation, dinrnalism, photoperiod, pineal body, Shinisaurus crocodilurus

CLC Number: 

  • Q958.1
[1] HUFFELDT N P, MERKEL F R. Sex-specific, inverted rhythms of breeding-site attendance in an Arctic seabird[J]. Biology Letters, 2016, 12(9): 20160289. DOI: 10.1098/rsbl.2016.0289.
[2] 张剑,夏灿玮,张雁云. 极昼环境下阿德利企鹅育雏期鸣声的日节律[J]. 生态学杂志,2021, 40(4): 1098-1106. DOI: 10.13292/j.1000-4890.202104.018.
[3] 王静,侯婉婷,秦雪梅,等.昼夜节律的相关研究进展[J].中国中药杂志,2021,46(13):3240-3248.DOI: 10.19540/j.cnki.cjcmm.20210308.601.
[4] 罗庆华,陶水秀,周立清,等. 旅游干扰的水质模拟对繁殖前期中国大鲵夜间活动节律的影响[J]. 生态学报,2020, 40(14): 4863-4873. DOI: 10.5846/stxb201906061203.
[5] NELSON R J, DENLINGER D L, SOMERS D E. Photoperiodism: the biological calendar[M]. New York: Oxford University Press, 2010. DOI: 10.1093/acprof:oso/9780195335903.001.0001.
[6] 任修涛,杨艳艳,张宁,等. 光周期对棕色田鼠和昆明小鼠昼夜节律及活动的影响[J]. 动物学杂志,2011, 46(4): 32-39. DOI: 10.13859/j.cjz.2011.04.009.
[7] GOLDMAN B D. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement[J]. Journal of Biological Rhythms, 2001, 16(4): 283-301. DOI: 10.1177/074873001129001980.
[8] BRADSHAW W E, HOLZAPFEL C M. Evolution of animal photoperiodism[J]. Annual Review of Ecology, Evolution, and Systematics, 2007, 38(1): 1-25. DOI: 10.1146/annurev.ecolsys.37.091305.110115.
[9] BOEGE H L, BHATTI M Z, ST-ONGE M P. Circadian rhythms and meal timing: impact on energy balance and body weight[J]. Current Opinion in Biotechnology, 2021, 70:1-6. DOI: 10.1016/j.copbio.2020.08.009.
[10] GUTIERREZ LOPEZ D E, LASHINGER L M, WEINSTOCK G M, et al. Circadian rhythms and the gut microbiome synchronize the host's metabolic response to diet[J]. Cell Metabolism, 2021, 33(5):873-887. DOI: 10.1016/j.cmet.2021.03.015.
[11] ZHAO Z J,WANG D H. Short photoperiod enhances thermogenic capacity in Brandt's voles[J]. Physiology & Behavior, 2005, 85(2): 143-149. DOI: 10.1016/j.physbeh.2005.03.014.
[12] PATKE A, YOUNG M W, AXELROD S. Molecular mechanisms and physiological importance of circadian rhythms[J]. Nature Reviews Molecular Cell Biology, 2020, 21(2): 67-84. DOI: 10.1038/s41580-019-0179-2.
[13] KLINGENSPOR M, NIGGEMANN H,HELDMAIER G. Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus[J]. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2000, 170(1): 37-43. DOI: 10.1007/s003600050005.
[14] RUSS A, RÜGER A,KLENKE R. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination[J]. Journal of Ornithology, 2015, 156(1): 123-131. DOI: 10.1007/s10336-014-1105-1.
[15] 韩志斌. 光周期对中华绒螯蟹褪黑激素昼夜节律的影响及眼柄的调控作用研究[D]. 沈阳:沈阳农业大学, 2020. DOI: 10.27327/d.cnki.gshnu.2020.000625.
[16] SHETTLEWORTH S J, HAMPTON R R, WESTWOOD R P. Effects of season and photoperiod on food storing by black-capped chickadees, Parus atricapillus[J]. Animal Behaviour, 1995, 49(4): 989-998. DOI: 10.1006/anbe.1995.0128.
[17] REPARAZ L B, VAN OERS K, NAGUIB M, et al. Mate preference of female blue tits varies with experimental photoperiod[J]. PLoS One, 2014, 9(3): e92527. DOI: 10.1371/journal.pone.0092527.
[18] 熊勇红,邹怡欣,时雨杰,等. 哺乳动物生物钟与肠道菌群关系的研究进展[J]. 生命科学,2020, 32(6): 551-557. DOI: 10.13376/j.cbls/2020068.
[19] TOSINI G, BERTOLUCCI C,FOÀ A. The circadian system of reptiles: a multioscillatory and multiphotoreceptive system[J]. Physiology & Behavior, 2001, 72(4): 461-471. DOI: 10.1016/S0031-9384(00)00423-6.
[20] WOOLLEY S C, SAKATA J T,CREWS D. Evolutionary insights into the regulation of courtship behavior in male amphibians and reptiles[J]. Physiology & Behavior, 2004, 83(2): 347-360. DOI: 10.1016/j.physbeh.2004.08.021.
[21] 杨颖,陈黎,卢立志. 松果体调控动物季节性繁殖概述[J]. 农业生物技术学报,2017, 25(7): 1086-1101. DOI: 10.3969/j.issn.1674-7968.2017.07.006.
[22] 何南,张小丽,阙青青,等. 广东罗坑自然保护区鳄蜥生理体温调节能力研究[J]. 野生动物学报,2022, 43(1):139-144. DOI: 10.19711/j.cnki.issn2310-1490.2022.01.043.
[23] 何南,张小丽,陈宁,等.基于SSR分析广东罗坑鳄蜥饲养种群的遗传结构[J].广西师范大学学报(自然科学版),2022,40(4): 180-187.DOI: 10.16088/j.issn.1001-6600.2021033101.
[24] 张桐玮,程瑞,武正军,等.人工繁育与野外鳄蜥选择体温和运动能力的比较[J].广西师范大学学报(自然科学版),2022,40(6):219-225.DOI: 10.16088/j.issn.1001-6600.2021042702.
[25] 罗树毅. 走进鳄蜥的世界[J]. 大自然,2021(5): 32-39.
[26] 宁加佳. 广东罗坑自然保护区鳄蜥(Shinisaurus crocodilurus)的活动时间分配及食性[D]. 桂林:广西师范大学,2007.
[27] 郑毅,袁宝,姜昊,等. 哺乳动物松果体非编码RNA研究进展[J]. 内蒙古民族大学学报(自然科学版),2020, 35(6): 509-515. DOI: 10.14045/j.cnki.15-1220.2020.06.009.
[28] 刘莉莉,李文博,姚瑞,等. 不同光照时间对大鼠褪黑素分泌的调节[J]. 中兽医医药杂志,2020, 39(3): 34-37. DOI: 10.13823/j.cnki.jtcvm.2020.03.009.
[29] 李响,马芙蓉,李嘉伦,等. 褪黑素和褪黑素受体对下丘脑-垂体-肾上腺轴作用的研究进展[J]. 现代生物医学进展,2021, 21(1): 197-200. DOI: 10.13241/j.cnki.pmb.2021.01.044.
[30] ELLIS D J, FIRTH B T,BELAN I. Circadian rhythms of locomotor activity and temperature selection in sleepy lizards, Tiliqua rugosa[J]. Journal of Comparative Physiology A, 2007, 193: 695-701. DOI: 10.1007/s00359-007-0224-z.
[1] ZHANG Tongwei, CHENG Rui, WU Zhengjun, HE Mingxian, ZHONG Chunying. Comparison of Selected Body Temperatures and Running Ability Between Captive-bred and Wild Shinisaurus crocodilurus [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 215-221.
[2] LUO Shuyi, LI Yongtai, WU Zhengjun, CHENG Rui, CHEN Yaohuan, HE Jiasong. Influencing Factors of Perch Height of Shinisaurus crocodilurus in Daguishan Mountain, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 182-189.
[3] HE Mingxian, XU Shulin, LI Shilin, LUO Shuyi, YANG Chunsheng,CHENG Rui, WU Zhengjun. Correlation between Locomotor Performance and Body Measurements of Captive Breeding Shinisaurus crocodilurus [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 120-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Zhengchun. Research Progress of Complementary Sequences[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 1 -16 .
[2] YANG Shuozhen, ZHANG Long, WANG Jianhua, ZHANG Hengyuan. Review of Sound Event Detection[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 1 -18 .
[3] YANG Shenglong, MU Qingchuang, ZHANG Zhihua, LIU Kui. Technical Progress in Recovery and Utilization of Spent Lithium-ion Batteries[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 19 -26 .
[4] LI Kangliang, QIU Caixiong, HE Shuang, HUANG Chunhua, WU Guanyi. Research Progress of IL-31 in Itch[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 27 -35 .
[5] LU Xumeng, NAN Xinyuan, XIA Sibo. Trajectory Tracking Control Based on Model-Free Coordinate Compensation Integral Sliding Mode Constraints[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 36 -48 .
[6] ZHANG Weijian, BING Qichun, SHEN Fuxin, HU Yanran, GAO Peng. Travel Time Estimation Method of Urban Expressway Section[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 49 -57 .
[7] YANG Xiu, WEI Duqu. Chaos Tracking Control of Permanent Magnet Synchronous Motor Based on Single State Variable[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 58 -66 .
[8] ZHAO Yuan, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, CAI Chaobo, JIANG Pinqun. Design of a Novel Current-Mirror Operational Transconductance Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 67 -75 .
[9] WANG Luna, DU Hongbo, ZHU Lijun. Stacked Capsule Autoencoders Optimization Algorithm Based on Manifold Regularization[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 76 -85 .
[10] ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86 -97 .